Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomf Structured version   Visualization version   GIF version

Theorem rngohomf 37570
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomf.1 𝐺 = (1st𝑅)
rnghomf.2 𝑋 = ran 𝐺
rnghomf.3 𝐽 = (1st𝑆)
rnghomf.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngohomf ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)

Proof of Theorem rngohomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomf.1 . . . . 5 𝐺 = (1st𝑅)
2 eqid 2725 . . . . 5 (2nd𝑅) = (2nd𝑅)
3 rnghomf.2 . . . . 5 𝑋 = ran 𝐺
4 eqid 2725 . . . . 5 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
5 rnghomf.3 . . . . 5 𝐽 = (1st𝑆)
6 eqid 2725 . . . . 5 (2nd𝑆) = (2nd𝑆)
7 rnghomf.4 . . . . 5 𝑌 = ran 𝐽
8 eqid 2725 . . . . 5 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37569 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))))
109biimpa 475 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))))
1110simp1d 1139 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)
12113impa 1107 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  GIdcgi 30372  RingOpscrngo 37498   RingOpsHom crngohom 37564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-rngohom 37567
This theorem is referenced by:  rngohomcl  37571  rngogrphom  37575  rngohomco  37578  keridl  37636
  Copyright terms: Public domain W3C validator