Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohomf | Structured version Visualization version GIF version |
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
rnghomf.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rnghomf.2 | ⊢ 𝑋 = ran 𝐺 |
rnghomf.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rnghomf.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
rngohomf | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghomf.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . . . 5 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | rnghomf.2 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2738 | . . . . 5 ⊢ (GId‘(2nd ‘𝑅)) = (GId‘(2nd ‘𝑅)) | |
5 | rnghomf.3 | . . . . 5 ⊢ 𝐽 = (1st ‘𝑆) | |
6 | eqid 2738 | . . . . 5 ⊢ (2nd ‘𝑆) = (2nd ‘𝑆) | |
7 | rnghomf.4 | . . . . 5 ⊢ 𝑌 = ran 𝐽 | |
8 | eqid 2738 | . . . . 5 ⊢ (GId‘(2nd ‘𝑆)) = (GId‘(2nd ‘𝑆)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | isrngohom 36123 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘(GId‘(2nd ‘𝑅))) = (GId‘(2nd ‘𝑆)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥(2nd ‘𝑅)𝑦)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑦)))))) |
10 | 9 | biimpa 477 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋⟶𝑌 ∧ (𝐹‘(GId‘(2nd ‘𝑅))) = (GId‘(2nd ‘𝑆)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥(2nd ‘𝑅)𝑦)) = ((𝐹‘𝑥)(2nd ‘𝑆)(𝐹‘𝑦))))) |
11 | 10 | simp1d 1141 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋⟶𝑌) |
12 | 11 | 3impa 1109 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 GIdcgi 28852 RingOpscrngo 36052 RngHom crnghom 36118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-rngohom 36121 |
This theorem is referenced by: rngohomcl 36125 rngogrphom 36129 rngohomco 36132 keridl 36190 |
Copyright terms: Public domain | W3C validator |