Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomf Structured version   Visualization version   GIF version

Theorem rngohomf 37926
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomf.1 𝐺 = (1st𝑅)
rnghomf.2 𝑋 = ran 𝐺
rnghomf.3 𝐽 = (1st𝑆)
rnghomf.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngohomf ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)

Proof of Theorem rngohomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomf.1 . . . . 5 𝐺 = (1st𝑅)
2 eqid 2740 . . . . 5 (2nd𝑅) = (2nd𝑅)
3 rnghomf.2 . . . . 5 𝑋 = ran 𝐺
4 eqid 2740 . . . . 5 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
5 rnghomf.3 . . . . 5 𝐽 = (1st𝑆)
6 eqid 2740 . . . . 5 (2nd𝑆) = (2nd𝑆)
7 rnghomf.4 . . . . 5 𝑌 = ran 𝐽
8 eqid 2740 . . . . 5 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37925 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))))
109biimpa 476 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))))
1110simp1d 1142 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)
12113impa 1110 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  GIdcgi 30522  RingOpscrngo 37854   RingOpsHom crngohom 37920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-rngohom 37923
This theorem is referenced by:  rngohomcl  37927  rngogrphom  37931  rngohomco  37934  keridl  37992
  Copyright terms: Public domain W3C validator