Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomf Structured version   Visualization version   GIF version

Theorem rngohomf 35718
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomf.1 𝐺 = (1st𝑅)
rnghomf.2 𝑋 = ran 𝐺
rnghomf.3 𝐽 = (1st𝑆)
rnghomf.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngohomf ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋𝑌)

Proof of Theorem rngohomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomf.1 . . . . 5 𝐺 = (1st𝑅)
2 eqid 2758 . . . . 5 (2nd𝑅) = (2nd𝑅)
3 rnghomf.2 . . . . 5 𝑋 = ran 𝐺
4 eqid 2758 . . . . 5 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
5 rnghomf.3 . . . . 5 𝐽 = (1st𝑆)
6 eqid 2758 . . . . 5 (2nd𝑆) = (2nd𝑆)
7 rnghomf.4 . . . . 5 𝑌 = ran 𝐽
8 eqid 2758 . . . . 5 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
91, 2, 3, 4, 5, 6, 7, 8isrngohom 35717 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))))
109biimpa 480 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋𝑌 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))))
1110simp1d 1139 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋𝑌)
12113impa 1107 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  ran crn 5529  wf 6336  cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  GIdcgi 28385  RingOpscrngo 35646   RngHom crnghom 35712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8424  df-rngohom 35715
This theorem is referenced by:  rngohomcl  35719  rngogrphom  35723  rngohomco  35726  keridl  35784
  Copyright terms: Public domain W3C validator