Proof of Theorem funeldmdif
Step | Hyp | Ref
| Expression |
1 | | funrel 6451 |
. . 3
⊢ (Fun
𝐴 → Rel 𝐴) |
2 | | releldmdifi 7886 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) |
3 | 1, 2 | sylan 580 |
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) |
4 | | eldif 3897 |
. . . 4
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | | 1stdm 7881 |
. . . . . . . . . . . . . 14
⊢ ((Rel
𝐴 ∧ 𝑥 ∈ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴) |
6 | 5 | ex 413 |
. . . . . . . . . . . . 13
⊢ (Rel
𝐴 → (𝑥 ∈ 𝐴 → (1st ‘𝑥) ∈ dom 𝐴)) |
7 | 1, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ (Fun
𝐴 → (𝑥 ∈ 𝐴 → (1st ‘𝑥) ∈ dom 𝐴)) |
8 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ 𝐴 → (1st ‘𝑥) ∈ dom 𝐴)) |
9 | 8 | com12 32 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴)) |
10 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴) → (1st ‘𝑥) ∈ dom 𝐴)) |
11 | 10 | impcom 408 |
. . . . . . . 8
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) → (1st ‘𝑥) ∈ dom 𝐴) |
12 | | funelss 7888 |
. . . . . . . . . . 11
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((1st ‘𝑥) ∈ dom 𝐵 → 𝑥 ∈ 𝐵)) |
13 | 12 | 3expa 1117 |
. . . . . . . . . 10
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((1st ‘𝑥) ∈ dom 𝐵 → 𝑥 ∈ 𝐵)) |
14 | 13 | con3d 152 |
. . . . . . . . 9
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝐵 → ¬ (1st ‘𝑥) ∈ dom 𝐵)) |
15 | 14 | impr 455 |
. . . . . . . 8
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) → ¬ (1st ‘𝑥) ∈ dom 𝐵) |
16 | 11, 15 | eldifd 3898 |
. . . . . . 7
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) → (1st ‘𝑥) ∈ (dom 𝐴 ∖ dom 𝐵)) |
17 | 16 | 3adant3 1131 |
. . . . . 6
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (1st ‘𝑥) = 𝐶) → (1st ‘𝑥) ∈ (dom 𝐴 ∖ dom 𝐵)) |
18 | | eleq1 2826 |
. . . . . . 7
⊢
((1st ‘𝑥) = 𝐶 → ((1st ‘𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))) |
19 | 18 | 3ad2ant3 1134 |
. . . . . 6
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (1st ‘𝑥) = 𝐶) → ((1st ‘𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))) |
20 | 17, 19 | mpbid 231 |
. . . . 5
⊢ (((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (1st ‘𝑥) = 𝐶) → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)) |
21 | 20 | 3exp 1118 |
. . . 4
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ((1st ‘𝑥) = 𝐶 → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))) |
22 | 4, 21 | syl5bi 241 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑥 ∈ (𝐴 ∖ 𝐵) → ((1st ‘𝑥) = 𝐶 → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))) |
23 | 22 | rexlimdv 3212 |
. 2
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶 → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))) |
24 | 3, 23 | impbid 211 |
1
⊢ ((Fun
𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) |