MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmdif Structured version   Visualization version   GIF version

Theorem funeldmdif 7862
Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funeldmdif ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem funeldmdif
StepHypRef Expression
1 funrel 6435 . . 3 (Fun 𝐴 → Rel 𝐴)
2 releldmdifi 7859 . . 3 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
31, 2sylan 579 . 2 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
4 eldif 3893 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 1stdm 7854 . . . . . . . . . . . . . 14 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
65ex 412 . . . . . . . . . . . . 13 (Rel 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
71, 6syl 17 . . . . . . . . . . . 12 (Fun 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
87adantr 480 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴) → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
98com12 32 . . . . . . . . . 10 (𝑥𝐴 → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
109adantr 480 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
1110impcom 407 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ dom 𝐴)
12 funelss 7861 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
13123expa 1116 . . . . . . . . . 10 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
1413con3d 152 . . . . . . . . 9 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ¬ (1st𝑥) ∈ dom 𝐵))
1514impr 454 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → ¬ (1st𝑥) ∈ dom 𝐵)
1611, 15eldifd 3894 . . . . . . 7 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
17163adant3 1130 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
18 eleq1 2826 . . . . . . 7 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
19183ad2ant3 1133 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
2017, 19mpbid 231 . . . . 5 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))
21203exp 1117 . . . 4 ((Fun 𝐴𝐵𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
224, 21syl5bi 241 . . 3 ((Fun 𝐴𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
2322rexlimdv 3211 . 2 ((Fun 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
243, 23impbid 211 1 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  wss 3883  dom cdm 5580  Rel wrel 5585  Fun wfun 6412  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  satffunlem2lem2  33268
  Copyright terms: Public domain W3C validator