MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmdif Structured version   Visualization version   GIF version

Theorem funeldmdif 8055
Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funeldmdif ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem funeldmdif
StepHypRef Expression
1 funrel 6563 . . 3 (Fun 𝐴 → Rel 𝐴)
2 releldmdifi 8052 . . 3 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
31, 2sylan 580 . 2 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
4 eldif 3941 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 1stdm 8047 . . . . . . . . . . . . . 14 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
65ex 412 . . . . . . . . . . . . 13 (Rel 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
71, 6syl 17 . . . . . . . . . . . 12 (Fun 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
87adantr 480 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴) → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
98com12 32 . . . . . . . . . 10 (𝑥𝐴 → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
109adantr 480 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
1110impcom 407 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ dom 𝐴)
12 funelss 8054 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
13123expa 1118 . . . . . . . . . 10 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
1413con3d 152 . . . . . . . . 9 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ¬ (1st𝑥) ∈ dom 𝐵))
1514impr 454 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → ¬ (1st𝑥) ∈ dom 𝐵)
1611, 15eldifd 3942 . . . . . . 7 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
17163adant3 1132 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
18 eleq1 2821 . . . . . . 7 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
19183ad2ant3 1135 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
2017, 19mpbid 232 . . . . 5 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))
21203exp 1119 . . . 4 ((Fun 𝐴𝐵𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
224, 21biimtrid 242 . . 3 ((Fun 𝐴𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
2322rexlimdv 3140 . 2 ((Fun 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
243, 23impbid 212 1 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  cdif 3928  wss 3931  dom cdm 5665  Rel wrel 5670  Fun wfun 6535  cfv 6541  1st c1st 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6494  df-fun 6543  df-fn 6544  df-fv 6549  df-1st 7996  df-2nd 7997
This theorem is referenced by:  satffunlem2lem2  35386
  Copyright terms: Public domain W3C validator