MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmdif Structured version   Visualization version   GIF version

Theorem funeldmdif 7747
Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.)
Assertion
Ref Expression
funeldmdif ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem funeldmdif
StepHypRef Expression
1 funrel 6372 . . 3 (Fun 𝐴 → Rel 𝐴)
2 releldmdifi 7744 . . 3 ((Rel 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
31, 2sylan 582 . 2 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
4 eldif 3946 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 1stdm 7739 . . . . . . . . . . . . . 14 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
65ex 415 . . . . . . . . . . . . 13 (Rel 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
71, 6syl 17 . . . . . . . . . . . 12 (Fun 𝐴 → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
87adantr 483 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴) → (𝑥𝐴 → (1st𝑥) ∈ dom 𝐴))
98com12 32 . . . . . . . . . 10 (𝑥𝐴 → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
109adantr 483 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((Fun 𝐴𝐵𝐴) → (1st𝑥) ∈ dom 𝐴))
1110impcom 410 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ dom 𝐴)
12 funelss 7746 . . . . . . . . . . 11 ((Fun 𝐴𝐵𝐴𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
13123expa 1114 . . . . . . . . . 10 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((1st𝑥) ∈ dom 𝐵𝑥𝐵))
1413con3d 155 . . . . . . . . 9 (((Fun 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ¬ (1st𝑥) ∈ dom 𝐵))
1514impr 457 . . . . . . . 8 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → ¬ (1st𝑥) ∈ dom 𝐵)
1611, 15eldifd 3947 . . . . . . 7 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
17163adant3 1128 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → (1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵))
18 eleq1 2900 . . . . . . 7 ((1st𝑥) = 𝐶 → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
19183ad2ant3 1131 . . . . . 6 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → ((1st𝑥) ∈ (dom 𝐴 ∖ dom 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
2017, 19mpbid 234 . . . . 5 (((Fun 𝐴𝐵𝐴) ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ (1st𝑥) = 𝐶) → 𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))
21203exp 1115 . . . 4 ((Fun 𝐴𝐵𝐴) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
224, 21syl5bi 244 . . 3 ((Fun 𝐴𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → ((1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵))))
2322rexlimdv 3283 . 2 ((Fun 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶𝐶 ∈ (dom 𝐴 ∖ dom 𝐵)))
243, 23impbid 214 1 ((Fun 𝐴𝐵𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐵)(1st𝑥) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  cdif 3933  wss 3936  dom cdm 5555  Rel wrel 5560  Fun wfun 6349  cfv 6355  1st c1st 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363  df-1st 7689  df-2nd 7690
This theorem is referenced by:  satffunlem2lem2  32653
  Copyright terms: Public domain W3C validator