Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shunssji | Structured version Visualization version GIF version |
Description: Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shunssji | ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | shssii 29100 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
3 | shincl.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | shssii 29100 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
5 | 2, 4 | unssi 4092 | . . 3 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
6 | ococss 29180 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
8 | shjval 29238 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
9 | 1, 3, 8 | mp2an 691 | . 2 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
10 | 7, 9 | sseqtrri 3931 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∪ cun 3858 ⊆ wss 3860 ‘cfv 6339 (class class class)co 7155 ℋchba 28806 Sℋ csh 28815 ⊥cort 28817 ∨ℋ chj 28820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-hilex 28886 ax-hfvadd 28887 ax-hv0cl 28890 ax-hfvmul 28892 ax-hvmul0 28897 ax-hfi 28966 ax-his1 28969 ax-his2 28970 ax-his3 28971 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-2 11742 df-cj 14511 df-re 14512 df-im 14513 df-sh 29094 df-oc 29139 df-chj 29197 |
This theorem is referenced by: shsleji 29257 chunssji 29354 |
Copyright terms: Public domain | W3C validator |