![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shunssji | Structured version Visualization version GIF version |
Description: Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shunssji | ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | shssii 30733 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
3 | shincl.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
4 | 3 | shssii 30733 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
5 | 2, 4 | unssi 4184 | . . 3 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
6 | ococss 30813 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝐴 ∪ 𝐵) ⊆ (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
8 | shjval 30871 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
9 | 1, 3, 8 | mp2an 688 | . 2 ⊢ (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
10 | 7, 9 | sseqtrri 4018 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 ∨ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∪ cun 3945 ⊆ wss 3947 ‘cfv 6542 (class class class)co 7411 ℋchba 30439 Sℋ csh 30448 ⊥cort 30450 ∨ℋ chj 30453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-hilex 30519 ax-hfvadd 30520 ax-hv0cl 30523 ax-hfvmul 30525 ax-hvmul0 30530 ax-hfi 30599 ax-his1 30602 ax-his2 30603 ax-his3 30604 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-cj 15050 df-re 15051 df-im 15052 df-sh 30727 df-oc 30772 df-chj 30830 |
This theorem is referenced by: shsleji 30890 chunssji 30987 |
Copyright terms: Public domain | W3C validator |