Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme39a Structured version   Visualization version   GIF version

Theorem cdleme39a 40444
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 𝑄 line. TODO: FIX COMMENT. 𝐸, 𝑌, 𝐺, 𝑍 serve as f(t), f(u), ft(𝑅), ft(𝑆). Put hypotheses of cdleme38n 40443 in convention of cdleme32sn1awN 40411. TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013.)
Hypotheses
Ref Expression
cdleme39.l = (le‘𝐾)
cdleme39.j = (join‘𝐾)
cdleme39.m = (meet‘𝐾)
cdleme39.a 𝐴 = (Atoms‘𝐾)
cdleme39.h 𝐻 = (LHyp‘𝐾)
cdleme39.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme39.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme39.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme39a.v 𝑉 = ((𝑡 𝐸) 𝑊)
Assertion
Ref Expression
cdleme39a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝐺 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊))))

Proof of Theorem cdleme39a
StepHypRef Expression
1 cdleme39.g . 2 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
2 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑃𝐴)
4 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑄𝐴)
5 simp2 1137 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
6 simp3l 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑅 (𝑃 𝑄))
7 cdleme39.l . . . . . 6 = (le‘𝐾)
8 cdleme39.j . . . . . 6 = (join‘𝐾)
9 cdleme39.m . . . . . 6 = (meet‘𝐾)
10 cdleme39.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdleme39.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdleme39.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
137, 8, 9, 10, 11, 12cdleme4 40217 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) = (𝑅 𝑈))
142, 3, 4, 5, 6, 13syl131anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑃 𝑄) = (𝑅 𝑈))
15 cdleme39a.v . . . . . 6 𝑉 = ((𝑡 𝐸) 𝑊)
16 simp3r 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
17 cdleme39.e . . . . . . . 8 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
187, 8, 9, 10, 11, 12, 17cdleme2 40207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → ((𝑡 𝐸) 𝑊) = 𝑈)
192, 3, 4, 16, 18syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → ((𝑡 𝐸) 𝑊) = 𝑈)
2015, 19eqtrid 2776 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑉 = 𝑈)
2120oveq2d 7365 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑅 𝑉) = (𝑅 𝑈))
2214, 21eqtr4d 2767 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑃 𝑄) = (𝑅 𝑉))
23 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝐾 ∈ HL)
24 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑅𝐴)
25 simp3rl 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝑡𝐴)
268, 10hlatjcom 39347 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑡𝐴) → (𝑅 𝑡) = (𝑡 𝑅))
2723, 24, 25, 26syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝑅 𝑡) = (𝑡 𝑅))
2827oveq1d 7364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → ((𝑅 𝑡) 𝑊) = ((𝑡 𝑅) 𝑊))
2928oveq2d 7365 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → (𝐸 ((𝑅 𝑡) 𝑊)) = (𝐸 ((𝑡 𝑅) 𝑊)))
3022, 29oveq12d 7367 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊))) = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊))))
311, 30eqtrid 2776 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊))) → 𝐺 = ((𝑅 𝑉) (𝐸 ((𝑡 𝑅) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39242  HLchlt 39329  LHypclh 39963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967
This theorem is referenced by:  cdleme39n  40445
  Copyright terms: Public domain W3C validator