Proof of Theorem cdleme39a
Step | Hyp | Ref
| Expression |
1 | | cdleme39.g |
. 2
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
2 | | simp11 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp12 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
4 | | simp13 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
5 | | simp2 1138 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
6 | | simp3l 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
7 | | cdleme39.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
8 | | cdleme39.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
9 | | cdleme39.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
10 | | cdleme39.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
11 | | cdleme39.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | cdleme39.u |
. . . . . 6
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
13 | 7, 8, 9, 10, 11, 12 | cdleme4 37872 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑈)) |
14 | 2, 3, 4, 5, 6, 13 | syl131anc 1384 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑈)) |
15 | | cdleme39a.v |
. . . . . 6
⊢ 𝑉 = ((𝑡 ∨ 𝐸) ∧ 𝑊) |
16 | | simp3r 1203 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
17 | | cdleme39.e |
. . . . . . . 8
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
18 | 7, 8, 9, 10, 11, 12, 17 | cdleme2 37862 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → ((𝑡 ∨ 𝐸) ∧ 𝑊) = 𝑈) |
19 | 2, 3, 4, 16, 18 | syl13anc 1373 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → ((𝑡 ∨ 𝐸) ∧ 𝑊) = 𝑈) |
20 | 15, 19 | syl5eq 2785 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑉 = 𝑈) |
21 | 20 | oveq2d 7187 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑅 ∨ 𝑉) = (𝑅 ∨ 𝑈)) |
22 | 14, 21 | eqtr4d 2776 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑉)) |
23 | | simp11l 1285 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝐾 ∈ HL) |
24 | | simp2l 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑅 ∈ 𝐴) |
25 | | simp3rl 1247 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝑡 ∈ 𝐴) |
26 | 8, 10 | hlatjcom 37002 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (𝑅 ∨ 𝑡) = (𝑡 ∨ 𝑅)) |
27 | 23, 24, 25, 26 | syl3anc 1372 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝑅 ∨ 𝑡) = (𝑡 ∨ 𝑅)) |
28 | 27 | oveq1d 7186 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → ((𝑅 ∨ 𝑡) ∧ 𝑊) = ((𝑡 ∨ 𝑅) ∧ 𝑊)) |
29 | 28 | oveq2d 7187 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊)) = (𝐸 ∨ ((𝑡 ∨ 𝑅) ∧ 𝑊))) |
30 | 22, 29 | oveq12d 7189 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑅 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑅) ∧ 𝑊)))) |
31 | 1, 30 | syl5eq 2785 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊))) → 𝐺 = ((𝑅 ∨ 𝑉) ∧ (𝐸 ∨ ((𝑡 ∨ 𝑅) ∧ 𝑊)))) |