| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp12 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 3 | | simp13 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 4 | | simp2l 1200 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
| 5 | | cdlemef50.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 6 | | cdlemef50.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 7 | | cdlemef50.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | cdlemef50.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | 5, 6, 7, 8 | cdlemb2 40043 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
| 10 | 1, 2, 3, 4, 9 | syl121anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
| 11 | | simp1 1137 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 12 | | simp2l 1200 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑃 ≠ 𝑄) |
| 13 | | simp2r 1201 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 14 | | simp3rl 1247 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑒 ∈ 𝐴) |
| 15 | | simprrl 781 |
. . . . . . . . . 10
⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ 𝑊) |
| 16 | 15 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ¬ 𝑒 ≤ 𝑊) |
| 17 | 14, 16 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) |
| 18 | | simp3l 1202 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 19 | | simprrr 782 |
. . . . . . . . 9
⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
| 20 | 19 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
| 21 | | cdlemef50.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
| 22 | | cdlemef50.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
| 23 | | cdlemef50.u |
. . . . . . . . 9
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 24 | | cdlemef50.d |
. . . . . . . . 9
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 25 | | cdlemefs50.e |
. . . . . . . . 9
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| 26 | | cdlemef50.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| 27 | 21, 5, 6, 22, 7, 8,
23, 24, 25, 26 | cdleme50trn2a 40552 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |
| 28 | 11, 12, 13, 17, 18, 20, 27 | syl132anc 1390 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |
| 29 | 28 | 3exp 1120 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈))) |
| 30 | 29 | exp4a 431 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ≤ (𝑃 ∨ 𝑄) → ((𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)))) |
| 31 | 30 | 3imp 1111 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)) |
| 32 | 31 | expd 415 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈))) |
| 33 | 32 | rexlimdv 3153 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)) |
| 34 | 10, 33 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |