Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp12 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp13 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simp2l 1197 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
5 | | cdlemef50.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | cdlemef50.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | cdlemef50.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | cdlemef50.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 5, 6, 7, 8 | cdlemb2 38034 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
10 | 1, 2, 3, 4, 9 | syl121anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) |
11 | | simp1 1134 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
12 | | simp2l 1197 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑃 ≠ 𝑄) |
13 | | simp2r 1198 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
14 | | simp3rl 1244 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑒 ∈ 𝐴) |
15 | | simprrl 777 |
. . . . . . . . . 10
⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ 𝑊) |
16 | 15 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ¬ 𝑒 ≤ 𝑊) |
17 | 14, 16 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) |
18 | | simp3l 1199 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
19 | | simprrr 778 |
. . . . . . . . 9
⊢ ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
20 | 19 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) |
21 | | cdlemef50.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
22 | | cdlemef50.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
23 | | cdlemef50.u |
. . . . . . . . 9
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
24 | | cdlemef50.d |
. . . . . . . . 9
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
25 | | cdlemefs50.e |
. . . . . . . . 9
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
26 | | cdlemef50.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
27 | 21, 5, 6, 22, 7, 8,
23, 24, 25, 26 | cdleme50trn2a 38543 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |
28 | 11, 12, 13, 17, 18, 20, 27 | syl132anc 1386 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |
29 | 28 | 3exp 1117 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝑅 ≤ (𝑃 ∨ 𝑄) ∧ (𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈))) |
30 | 29 | exp4a 431 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ≤ (𝑃 ∨ 𝑄) → ((𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)))) |
31 | 30 | 3imp 1109 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑒 ∈ 𝐴 ∧ (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)) |
32 | 31 | expd 415 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑒 ∈ 𝐴 → ((¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈))) |
33 | 32 | rexlimdv 3213 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (∃𝑒 ∈ 𝐴 (¬ 𝑒 ≤ 𝑊 ∧ ¬ 𝑒 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈)) |
34 | 10, 33 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑅 ∨ (𝐹‘𝑅)) ∧ 𝑊) = 𝑈) |