Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50trn2 Structured version   Visualization version   GIF version

Theorem cdleme50trn2 38607
Description: Part of proof that 𝐹 is a translation. Remove 𝑆 hypotheses no longer needed from cdleme50trn2a 38606. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdleme50trn2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme50trn2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp2l 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
5 cdlemef50.l . . . 4 = (le‘𝐾)
6 cdlemef50.j . . . 4 = (join‘𝐾)
7 cdlemef50.a . . . 4 𝐴 = (Atoms‘𝐾)
8 cdlemef50.h . . . 4 𝐻 = (LHyp‘𝐾)
95, 6, 7, 8cdlemb2 38097 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑒𝐴𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)))
101, 2, 3, 4, 9syl121anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ∃𝑒𝐴𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)))
11 simp1 1136 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
12 simp2l 1199 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → 𝑃𝑄)
13 simp2r 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
14 simp3rl 1246 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → 𝑒𝐴)
15 simprrl 779 . . . . . . . . . 10 ((𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)))) → ¬ 𝑒 𝑊)
16153ad2ant3 1135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → ¬ 𝑒 𝑊)
1714, 16jca 513 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → (𝑒𝐴 ∧ ¬ 𝑒 𝑊))
18 simp3l 1201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → 𝑅 (𝑃 𝑄))
19 simprrr 780 . . . . . . . . 9 ((𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)))) → ¬ 𝑒 (𝑃 𝑄))
20193ad2ant3 1135 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → ¬ 𝑒 (𝑃 𝑄))
21 cdlemef50.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
22 cdlemef50.m . . . . . . . . 9 = (meet‘𝐾)
23 cdlemef50.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
24 cdlemef50.d . . . . . . . . 9 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
25 cdlemefs50.e . . . . . . . . 9 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
26 cdlemef50.f . . . . . . . . 9 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
2721, 5, 6, 22, 7, 8, 23, 24, 25, 26cdleme50trn2a 38606 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑒𝐴 ∧ ¬ 𝑒 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑒 (𝑃 𝑄))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
2811, 12, 13, 17, 18, 20, 27syl132anc 1388 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
29283exp 1119 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅 (𝑃 𝑄) ∧ (𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)))
3029exp4a 433 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 (𝑃 𝑄) → ((𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈))))
31303imp 1111 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑒𝐴 ∧ (¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄))) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈))
3231expd 417 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑒𝐴 → ((¬ 𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)))
3332rexlimdv 3147 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (∃𝑒𝐴𝑒 𝑊 ∧ ¬ 𝑒 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈))
3410, 33mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑅 (𝐹𝑅)) 𝑊) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  csb 3837  ifcif 4465   class class class wbr 5081  cmpt 5164  cfv 6458  crio 7263  (class class class)co 7307  Basecbs 16957  lecple 17014  joincjn 18074  meetcmee 18075  Atomscatm 37319  HLchlt 37406  LHypclh 38040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-riotaBAD 37009
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-undef 8120  df-proset 18058  df-poset 18076  df-plt 18093  df-lub 18109  df-glb 18110  df-join 18111  df-meet 18112  df-p0 18188  df-p1 18189  df-lat 18195  df-clat 18262  df-oposet 37232  df-ol 37234  df-oml 37235  df-covers 37322  df-ats 37323  df-atl 37354  df-cvlat 37378  df-hlat 37407  df-llines 37554  df-lplanes 37555  df-lvols 37556  df-lines 37557  df-psubsp 37559  df-pmap 37560  df-padd 37852  df-lhyp 38044
This theorem is referenced by:  cdleme50trn12  38608
  Copyright terms: Public domain W3C validator