Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn1dom Structured version   Visualization version   GIF version

Theorem sn1dom 43516
Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
sn1dom {𝐴} ≼ 1o

Proof of Theorem sn1dom
StepHypRef Expression
1 ensn1g 9061 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
2 1on 8517 . . . 4 1o ∈ On
3 domrefg 9026 . . . 4 (1o ∈ On → 1o ≼ 1o)
42, 3ax-mp 5 . . 3 1o ≼ 1o
5 endomtr 9051 . . 3 (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o)
61, 4, 5sylancl 586 . 2 (𝐴 ∈ V → {𝐴} ≼ 1o)
7 snprc 4722 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
8 snex 5442 . . . . 5 {𝐴} ∈ V
9 eqeng 9025 . . . . 5 ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅))
108, 9ax-mp 5 . . . 4 ({𝐴} = ∅ → {𝐴} ≈ ∅)
117, 10sylbi 217 . . 3 𝐴 ∈ V → {𝐴} ≈ ∅)
12 0domg 9139 . . . 4 (1o ∈ On → ∅ ≼ 1o)
132, 12ax-mp 5 . . 3 ∅ ≼ 1o
14 endomtr 9051 . . 3 (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o)
1511, 13, 14sylancl 586 . 2 𝐴 ∈ V → {𝐴} ≼ 1o)
166, 15pm2.61i 182 1 {𝐴} ≼ 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {csn 4631   class class class wbr 5148  Oncon0 6386  1oc1o 8498  cen 8981  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-1o 8505  df-en 8985  df-dom 8986
This theorem is referenced by:  pr2dom  43517  tr3dom  43518
  Copyright terms: Public domain W3C validator