Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn1dom Structured version   Visualization version   GIF version

Theorem sn1dom 43539
Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
sn1dom {𝐴} ≼ 1o

Proof of Theorem sn1dom
StepHypRef Expression
1 ensn1g 9062 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
2 1on 8518 . . . 4 1o ∈ On
3 domrefg 9027 . . . 4 (1o ∈ On → 1o ≼ 1o)
42, 3ax-mp 5 . . 3 1o ≼ 1o
5 endomtr 9052 . . 3 (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o)
61, 4, 5sylancl 586 . 2 (𝐴 ∈ V → {𝐴} ≼ 1o)
7 snprc 4717 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
8 snex 5436 . . . . 5 {𝐴} ∈ V
9 eqeng 9026 . . . . 5 ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅))
108, 9ax-mp 5 . . . 4 ({𝐴} = ∅ → {𝐴} ≈ ∅)
117, 10sylbi 217 . . 3 𝐴 ∈ V → {𝐴} ≈ ∅)
12 0domg 9140 . . . 4 (1o ∈ On → ∅ ≼ 1o)
132, 12ax-mp 5 . . 3 ∅ ≼ 1o
14 endomtr 9052 . . 3 (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o)
1511, 13, 14sylancl 586 . 2 𝐴 ∈ V → {𝐴} ≼ 1o)
166, 15pm2.61i 182 1 {𝐴} ≼ 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  {csn 4626   class class class wbr 5143  Oncon0 6384  1oc1o 8499  cen 8982  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-1o 8506  df-en 8986  df-dom 8987
This theorem is referenced by:  pr2dom  43540  tr3dom  43541
  Copyright terms: Public domain W3C validator