| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn1dom | Structured version Visualization version GIF version | ||
| Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| sn1dom | ⊢ {𝐴} ≼ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1g 8999 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
| 2 | 1on 8455 | . . . 4 ⊢ 1o ∈ On | |
| 3 | domrefg 8964 | . . . 4 ⊢ (1o ∈ On → 1o ≼ 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1o ≼ 1o |
| 5 | endomtr 8989 | . . 3 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o) | |
| 6 | 1, 4, 5 | sylancl 586 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≼ 1o) |
| 7 | snprc 4689 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 8 | snex 5399 | . . . . 5 ⊢ {𝐴} ∈ V | |
| 9 | eqeng 8963 | . . . . 5 ⊢ ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅)) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ({𝐴} = ∅ → {𝐴} ≈ ∅) |
| 11 | 7, 10 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≈ ∅) |
| 12 | 0domg 9077 | . . . 4 ⊢ (1o ∈ On → ∅ ≼ 1o) | |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∅ ≼ 1o |
| 14 | endomtr 8989 | . . 3 ⊢ (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o) | |
| 15 | 11, 13, 14 | sylancl 586 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≼ 1o) |
| 16 | 6, 15 | pm2.61i 182 | 1 ⊢ {𝐴} ≼ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 {csn 4597 class class class wbr 5115 Oncon0 6340 1oc1o 8436 ≈ cen 8919 ≼ cdom 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ord 6343 df-on 6344 df-suc 6346 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-1o 8443 df-en 8923 df-dom 8924 |
| This theorem is referenced by: pr2dom 43488 tr3dom 43489 |
| Copyright terms: Public domain | W3C validator |