![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn1dom | Structured version Visualization version GIF version |
Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
Ref | Expression |
---|---|
sn1dom | ⊢ {𝐴} ≼ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g 9025 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
2 | 1on 8484 | . . . 4 ⊢ 1o ∈ On | |
3 | domrefg 8989 | . . . 4 ⊢ (1o ∈ On → 1o ≼ 1o) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1o ≼ 1o |
5 | endomtr 9014 | . . 3 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o) | |
6 | 1, 4, 5 | sylancl 585 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≼ 1o) |
7 | snprc 4721 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
8 | snex 5431 | . . . . 5 ⊢ {𝐴} ∈ V | |
9 | eqeng 8988 | . . . . 5 ⊢ ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅)) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ({𝐴} = ∅ → {𝐴} ≈ ∅) |
11 | 7, 10 | sylbi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≈ ∅) |
12 | 0domg 9106 | . . . 4 ⊢ (1o ∈ On → ∅ ≼ 1o) | |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∅ ≼ 1o |
14 | endomtr 9014 | . . 3 ⊢ (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o) | |
15 | 11, 13, 14 | sylancl 585 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≼ 1o) |
16 | 6, 15 | pm2.61i 182 | 1 ⊢ {𝐴} ≼ 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {csn 4628 class class class wbr 5148 Oncon0 6364 1oc1o 8465 ≈ cen 8942 ≼ cdom 8943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-1o 8472 df-en 8946 df-dom 8947 |
This theorem is referenced by: pr2dom 42741 tr3dom 42742 |
Copyright terms: Public domain | W3C validator |