Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn1dom Structured version   Visualization version   GIF version

Theorem sn1dom 43515
Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
sn1dom {𝐴} ≼ 1o

Proof of Theorem sn1dom
StepHypRef Expression
1 ensn1g 8993 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
2 1on 8446 . . . 4 1o ∈ On
3 domrefg 8958 . . . 4 (1o ∈ On → 1o ≼ 1o)
42, 3ax-mp 5 . . 3 1o ≼ 1o
5 endomtr 8983 . . 3 (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o)
61, 4, 5sylancl 586 . 2 (𝐴 ∈ V → {𝐴} ≼ 1o)
7 snprc 4681 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
8 snex 5391 . . . . 5 {𝐴} ∈ V
9 eqeng 8957 . . . . 5 ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅))
108, 9ax-mp 5 . . . 4 ({𝐴} = ∅ → {𝐴} ≈ ∅)
117, 10sylbi 217 . . 3 𝐴 ∈ V → {𝐴} ≈ ∅)
12 0domg 9068 . . . 4 (1o ∈ On → ∅ ≼ 1o)
132, 12ax-mp 5 . . 3 ∅ ≼ 1o
14 endomtr 8983 . . 3 (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o)
1511, 13, 14sylancl 586 . 2 𝐴 ∈ V → {𝐴} ≼ 1o)
166, 15pm2.61i 182 1 {𝐴} ≼ 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589   class class class wbr 5107  Oncon0 6332  1oc1o 8427  cen 8915  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-1o 8434  df-en 8919  df-dom 8920
This theorem is referenced by:  pr2dom  43516  tr3dom  43517
  Copyright terms: Public domain W3C validator