Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn1dom Structured version   Visualization version   GIF version

Theorem sn1dom 39966
Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.)
Assertion
Ref Expression
sn1dom {𝐴} ≼ 1o

Proof of Theorem sn1dom
StepHypRef Expression
1 ensn1g 8567 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1o)
2 1on 8102 . . . 4 1o ∈ On
3 domrefg 8537 . . . 4 (1o ∈ On → 1o ≼ 1o)
42, 3ax-mp 5 . . 3 1o ≼ 1o
5 endomtr 8560 . . 3 (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o)
61, 4, 5sylancl 588 . 2 (𝐴 ∈ V → {𝐴} ≼ 1o)
7 snprc 4646 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
8 snex 5325 . . . . 5 {𝐴} ∈ V
9 eqeng 8536 . . . . 5 ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅))
108, 9ax-mp 5 . . . 4 ({𝐴} = ∅ → {𝐴} ≈ ∅)
117, 10sylbi 219 . . 3 𝐴 ∈ V → {𝐴} ≈ ∅)
12 0domg 8637 . . . 4 (1o ∈ On → ∅ ≼ 1o)
132, 12ax-mp 5 . . 3 ∅ ≼ 1o
14 endomtr 8560 . . 3 (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o)
1511, 13, 14sylancl 588 . 2 𝐴 ∈ V → {𝐴} ≼ 1o)
166, 15pm2.61i 184 1 {𝐴} ≼ 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2113  Vcvv 3491  c0 4284  {csn 4560   class class class wbr 5059  Oncon0 6184  1oc1o 8088  cen 8499  cdom 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-suc 6190  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-1o 8095  df-en 8503  df-dom 8504
This theorem is referenced by:  pr2dom  39967  tr3dom  39968
  Copyright terms: Public domain W3C validator