| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn1dom | Structured version Visualization version GIF version | ||
| Description: A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
| Ref | Expression |
|---|---|
| sn1dom | ⊢ {𝐴} ≼ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensn1g 8947 | . . 3 ⊢ (𝐴 ∈ V → {𝐴} ≈ 1o) | |
| 2 | 1on 8400 | . . . 4 ⊢ 1o ∈ On | |
| 3 | domrefg 8912 | . . . 4 ⊢ (1o ∈ On → 1o ≼ 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1o ≼ 1o |
| 5 | endomtr 8937 | . . 3 ⊢ (({𝐴} ≈ 1o ∧ 1o ≼ 1o) → {𝐴} ≼ 1o) | |
| 6 | 1, 4, 5 | sylancl 586 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≼ 1o) |
| 7 | snprc 4669 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 8 | snex 5375 | . . . . 5 ⊢ {𝐴} ∈ V | |
| 9 | eqeng 8911 | . . . . 5 ⊢ ({𝐴} ∈ V → ({𝐴} = ∅ → {𝐴} ≈ ∅)) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ ({𝐴} = ∅ → {𝐴} ≈ ∅) |
| 11 | 7, 10 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≈ ∅) |
| 12 | 0domg 9021 | . . . 4 ⊢ (1o ∈ On → ∅ ≼ 1o) | |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∅ ≼ 1o |
| 14 | endomtr 8937 | . . 3 ⊢ (({𝐴} ≈ ∅ ∧ ∅ ≼ 1o) → {𝐴} ≼ 1o) | |
| 15 | 11, 13, 14 | sylancl 586 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ≼ 1o) |
| 16 | 6, 15 | pm2.61i 182 | 1 ⊢ {𝐴} ≼ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {csn 4577 class class class wbr 5092 Oncon0 6307 1oc1o 8381 ≈ cen 8869 ≼ cdom 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-1o 8388 df-en 8873 df-dom 8874 |
| This theorem is referenced by: pr2dom 43500 tr3dom 43501 |
| Copyright terms: Public domain | W3C validator |