Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
2 | | subrguss.3 |
. . . . . . . . 9
⊢ 𝑉 = (Unit‘𝑆) |
3 | | eqid 2740 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
4 | | eqid 2740 |
. . . . . . . . 9
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
5 | | eqid 2740 |
. . . . . . . . 9
⊢
(oppr‘𝑆) = (oppr‘𝑆) |
6 | | eqid 2740 |
. . . . . . . . 9
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) |
7 | 2, 3, 4, 5, 6 | isunit 19897 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 ↔ (𝑥(∥r‘𝑆)(1r‘𝑆) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
8 | 1, 7 | sylib 217 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(∥r‘𝑆)(1r‘𝑆) ∧ 𝑥(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
9 | 8 | simpld 495 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑆)) |
10 | | subrguss.1 |
. . . . . . . 8
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
11 | | eqid 2740 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
12 | 10, 11 | subrg1 20032 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(1r‘𝑅) =
(1r‘𝑆)) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (1r‘𝑅) = (1r‘𝑆)) |
14 | 9, 13 | breqtrrd 5107 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑆)(1r‘𝑅)) |
15 | | eqid 2740 |
. . . . . . . 8
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
16 | 10, 15, 4 | subrgdvds 20036 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(∥r‘𝑆) ⊆ (∥r‘𝑅)) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∥r‘𝑆) ⊆
(∥r‘𝑅)) |
18 | 17 | ssbrd 5122 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(∥r‘𝑆)(1r‘𝑅) → 𝑥(∥r‘𝑅)(1r‘𝑅))) |
19 | 14, 18 | mpd 15 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘𝑅)(1r‘𝑅)) |
20 | 10 | subrgbas 20031 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
21 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 = (Base‘𝑆)) |
22 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
23 | 22 | subrgss 20023 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝐴 ⊆ (Base‘𝑅)) |
25 | 21, 24 | eqsstrrd 3965 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
26 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
27 | 26, 2 | unitcl 19899 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∈ (Base‘𝑆)) |
28 | 27 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑆)) |
29 | 25, 28 | sseldd 3927 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) |
30 | 10 | subrgring 20025 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
31 | | eqid 2740 |
. . . . . . . . 9
⊢
(invr‘𝑆) = (invr‘𝑆) |
32 | 2, 31, 26 | ringinvcl 19916 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
33 | 30, 32 | sylan 580 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
34 | 25, 33 | sseldd 3927 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ (Base‘𝑅)) |
35 | | eqid 2740 |
. . . . . . . 8
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
36 | 35, 22 | opprbas 19867 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) |
37 | | eqid 2740 |
. . . . . . 7
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) |
38 | | eqid 2740 |
. . . . . . 7
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
39 | 36, 37, 38 | dvdsrmul 19888 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝑅) ∧
((invr‘𝑆)‘𝑥) ∈ (Base‘𝑅)) → 𝑥(∥r‘(oppr‘𝑅))(((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
40 | 29, 34, 39 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥)) |
41 | | eqid 2740 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
42 | 22, 41, 35, 38 | opprmul 19863 |
. . . . . 6
⊢
(((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) |
43 | | eqid 2740 |
. . . . . . . . 9
⊢
(.r‘𝑆) = (.r‘𝑆) |
44 | 2, 31, 43, 3 | unitrinv 19918 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
45 | 30, 44 | sylan 580 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥)) = (1r‘𝑆)) |
46 | 10, 41 | ressmulr 17015 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
47 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
48 | 47 | oveqd 7288 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (𝑥(.r‘𝑆)((invr‘𝑆)‘𝑥))) |
49 | 45, 48, 13 | 3eqtr4d 2790 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (𝑥(.r‘𝑅)((invr‘𝑆)‘𝑥)) = (1r‘𝑅)) |
50 | 42, 49 | eqtrid 2792 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (((invr‘𝑆)‘𝑥)(.r‘(oppr‘𝑅))𝑥) = (1r‘𝑅)) |
51 | 40, 50 | breqtrd 5105 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
52 | | subrguss.2 |
. . . . 5
⊢ 𝑈 = (Unit‘𝑅) |
53 | 52, 11, 15, 35, 37 | isunit 19897 |
. . . 4
⊢ (𝑥 ∈ 𝑈 ↔ (𝑥(∥r‘𝑅)(1r‘𝑅) ∧ 𝑥(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
54 | 19, 51, 53 | sylanbrc 583 |
. . 3
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑈) |
55 | 54 | ex 413 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈)) |
56 | 55 | ssrdv 3932 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |