MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrguss Structured version   Visualization version   GIF version

Theorem subrguss 20615
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
2 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
3 eqid 2740 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
4 eqid 2740 . . . . . . . . 9 (∥r𝑆) = (∥r𝑆)
5 eqid 2740 . . . . . . . . 9 (oppr𝑆) = (oppr𝑆)
6 eqid 2740 . . . . . . . . 9 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
72, 3, 4, 5, 6isunit 20399 . . . . . . . 8 (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆)))
81, 7sylib 218 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆)))
98simpld 494 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
10 subrguss.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
11 eqid 2740 . . . . . . . 8 (1r𝑅) = (1r𝑅)
1210, 11subrg1 20610 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1312adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
149, 13breqtrrd 5194 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
15 eqid 2740 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
1610, 15, 4subrgdvds 20614 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
1716adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
1817ssbrd 5209 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
1914, 18mpd 15 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
2010subrgbas 20609 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
2120adantr 480 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
22 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
2322subrgss 20600 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2423adantr 480 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
2521, 24eqsstrrd 4048 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
26 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
2726, 2unitcl 20401 . . . . . . . 8 (𝑥𝑉𝑥 ∈ (Base‘𝑆))
2827adantl 481 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
2925, 28sseldd 4009 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3010subrgring 20602 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
31 eqid 2740 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
322, 31, 26ringinvcl 20418 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
3330, 32sylan 579 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
3425, 33sseldd 4009 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
35 eqid 2740 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
3635, 22opprbas 20367 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
37 eqid 2740 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
38 eqid 2740 . . . . . . 7 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3936, 37, 38dvdsrmul 20390 . . . . . 6 ((𝑥 ∈ (Base‘𝑅) ∧ ((invr𝑆)‘𝑥) ∈ (Base‘𝑅)) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
4029, 34, 39syl2anc 583 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
41 eqid 2740 . . . . . . 7 (.r𝑅) = (.r𝑅)
4222, 41, 35, 38opprmul 20363 . . . . . 6 (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥))
43 eqid 2740 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
442, 31, 43, 3unitrinv 20420 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
4530, 44sylan 579 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
4610, 41ressmulr 17366 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
4746adantr 480 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
4847oveqd 7465 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
4945, 48, 133eqtr4d 2790 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
5042, 49eqtrid 2792 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
5140, 50breqtrd 5192 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
52 subrguss.2 . . . . 5 𝑈 = (Unit‘𝑅)
5352, 11, 15, 35, 37isunit 20399 . . . 4 (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
5419, 51, 53sylanbrc 582 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
5554ex 412 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
5655ssrdv 4014 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  .rcmulr 17312  1rcur 20208  Ringcrg 20260  opprcoppr 20359  rcdsr 20380  Unitcui 20381  invrcinvr 20413  SubRingcsubrg 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-subrg 20597
This theorem is referenced by:  subrginv  20616  subrgdv  20617  subrgunit  20618  subrgugrp  20619  issubdrg  20803  zringunit  21500
  Copyright terms: Public domain W3C validator