Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯ β π) |
2 | | subrguss.3 |
. . . . . . . . 9
β’ π = (Unitβπ) |
3 | | eqid 2731 |
. . . . . . . . 9
β’
(1rβπ) = (1rβπ) |
4 | | eqid 2731 |
. . . . . . . . 9
β’
(β₯rβπ) = (β₯rβπ) |
5 | | eqid 2731 |
. . . . . . . . 9
β’
(opprβπ) = (opprβπ) |
6 | | eqid 2731 |
. . . . . . . . 9
β’
(β₯rβ(opprβπ)) =
(β₯rβ(opprβπ)) |
7 | 2, 3, 4, 5, 6 | isunit 20265 |
. . . . . . . 8
β’ (π₯ β π β (π₯(β₯rβπ)(1rβπ) β§ π₯(β₯rβ(opprβπ))(1rβπ))) |
8 | 1, 7 | sylib 217 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (π₯(β₯rβπ)(1rβπ) β§ π₯(β₯rβ(opprβπ))(1rβπ))) |
9 | 8 | simpld 494 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯(β₯rβπ)(1rβπ)) |
10 | | subrguss.1 |
. . . . . . . 8
β’ π = (π
βΎs π΄) |
11 | | eqid 2731 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
12 | 10, 11 | subrg1 20473 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β
(1rβπ
) =
(1rβπ)) |
13 | 12 | adantr 480 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (1rβπ
) = (1rβπ)) |
14 | 9, 13 | breqtrrd 5176 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯(β₯rβπ)(1rβπ
)) |
15 | | eqid 2731 |
. . . . . . . 8
β’
(β₯rβπ
) = (β₯rβπ
) |
16 | 10, 15, 4 | subrgdvds 20477 |
. . . . . . 7
β’ (π΄ β (SubRingβπ
) β
(β₯rβπ) β (β₯rβπ
)) |
17 | 16 | adantr 480 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (β₯rβπ) β
(β₯rβπ
)) |
18 | 17 | ssbrd 5191 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (π₯(β₯rβπ)(1rβπ
) β π₯(β₯rβπ
)(1rβπ
))) |
19 | 14, 18 | mpd 15 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯(β₯rβπ
)(1rβπ
)) |
20 | 10 | subrgbas 20472 |
. . . . . . . . 9
β’ (π΄ β (SubRingβπ
) β π΄ = (Baseβπ)) |
21 | 20 | adantr 480 |
. . . . . . . 8
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π΄ = (Baseβπ)) |
22 | | eqid 2731 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ
) |
23 | 22 | subrgss 20463 |
. . . . . . . . 9
β’ (π΄ β (SubRingβπ
) β π΄ β (Baseβπ
)) |
24 | 23 | adantr 480 |
. . . . . . . 8
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π΄ β (Baseβπ
)) |
25 | 21, 24 | eqsstrrd 4021 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (Baseβπ) β (Baseβπ
)) |
26 | | eqid 2731 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
27 | 26, 2 | unitcl 20267 |
. . . . . . . 8
β’ (π₯ β π β π₯ β (Baseβπ)) |
28 | 27 | adantl 481 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯ β (Baseβπ)) |
29 | 25, 28 | sseldd 3983 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯ β (Baseβπ
)) |
30 | 10 | subrgring 20465 |
. . . . . . . 8
β’ (π΄ β (SubRingβπ
) β π β Ring) |
31 | | eqid 2731 |
. . . . . . . . 9
β’
(invrβπ) = (invrβπ) |
32 | 2, 31, 26 | ringinvcl 20284 |
. . . . . . . 8
β’ ((π β Ring β§ π₯ β π) β ((invrβπ)βπ₯) β (Baseβπ)) |
33 | 30, 32 | sylan 579 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β ((invrβπ)βπ₯) β (Baseβπ)) |
34 | 25, 33 | sseldd 3983 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β ((invrβπ)βπ₯) β (Baseβπ
)) |
35 | | eqid 2731 |
. . . . . . . 8
β’
(opprβπ
) = (opprβπ
) |
36 | 35, 22 | opprbas 20233 |
. . . . . . 7
β’
(Baseβπ
) =
(Baseβ(opprβπ
)) |
37 | | eqid 2731 |
. . . . . . 7
β’
(β₯rβ(opprβπ
)) =
(β₯rβ(opprβπ
)) |
38 | | eqid 2731 |
. . . . . . 7
β’
(.rβ(opprβπ
)) =
(.rβ(opprβπ
)) |
39 | 36, 37, 38 | dvdsrmul 20256 |
. . . . . 6
β’ ((π₯ β (Baseβπ
) β§
((invrβπ)βπ₯) β (Baseβπ
)) β π₯(β₯rβ(opprβπ
))(((invrβπ)βπ₯)(.rβ(opprβπ
))π₯)) |
40 | 29, 34, 39 | syl2anc 583 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯(β₯rβ(opprβπ
))(((invrβπ)βπ₯)(.rβ(opprβπ
))π₯)) |
41 | | eqid 2731 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
42 | 22, 41, 35, 38 | opprmul 20229 |
. . . . . 6
β’
(((invrβπ)βπ₯)(.rβ(opprβπ
))π₯) = (π₯(.rβπ
)((invrβπ)βπ₯)) |
43 | | eqid 2731 |
. . . . . . . . 9
β’
(.rβπ) = (.rβπ) |
44 | 2, 31, 43, 3 | unitrinv 20286 |
. . . . . . . 8
β’ ((π β Ring β§ π₯ β π) β (π₯(.rβπ)((invrβπ)βπ₯)) = (1rβπ)) |
45 | 30, 44 | sylan 579 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (π₯(.rβπ)((invrβπ)βπ₯)) = (1rβπ)) |
46 | 10, 41 | ressmulr 17257 |
. . . . . . . . 9
β’ (π΄ β (SubRingβπ
) β
(.rβπ
) =
(.rβπ)) |
47 | 46 | adantr 480 |
. . . . . . . 8
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (.rβπ
) = (.rβπ)) |
48 | 47 | oveqd 7429 |
. . . . . . 7
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (π₯(.rβπ
)((invrβπ)βπ₯)) = (π₯(.rβπ)((invrβπ)βπ₯))) |
49 | 45, 48, 13 | 3eqtr4d 2781 |
. . . . . 6
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (π₯(.rβπ
)((invrβπ)βπ₯)) = (1rβπ
)) |
50 | 42, 49 | eqtrid 2783 |
. . . . 5
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β (((invrβπ)βπ₯)(.rβ(opprβπ
))π₯) = (1rβπ
)) |
51 | 40, 50 | breqtrd 5174 |
. . . 4
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯(β₯rβ(opprβπ
))(1rβπ
)) |
52 | | subrguss.2 |
. . . . 5
β’ π = (Unitβπ
) |
53 | 52, 11, 15, 35, 37 | isunit 20265 |
. . . 4
β’ (π₯ β π β (π₯(β₯rβπ
)(1rβπ
) β§ π₯(β₯rβ(opprβπ
))(1rβπ
))) |
54 | 19, 51, 53 | sylanbrc 582 |
. . 3
β’ ((π΄ β (SubRingβπ
) β§ π₯ β π) β π₯ β π) |
55 | 54 | ex 412 |
. 2
β’ (π΄ β (SubRingβπ
) β (π₯ β π β π₯ β π)) |
56 | 55 | ssrdv 3988 |
1
β’ (π΄ β (SubRingβπ
) β π β π) |