MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrguss Structured version   Visualization version   GIF version

Theorem subrguss 19550
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrguss.1 𝑆 = (𝑅s 𝐴)
subrguss.2 𝑈 = (Unit‘𝑅)
subrguss.3 𝑉 = (Unit‘𝑆)
Assertion
Ref Expression
subrguss (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)

Proof of Theorem subrguss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑉)
2 subrguss.3 . . . . . . . . 9 𝑉 = (Unit‘𝑆)
3 eqid 2824 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
4 eqid 2824 . . . . . . . . 9 (∥r𝑆) = (∥r𝑆)
5 eqid 2824 . . . . . . . . 9 (oppr𝑆) = (oppr𝑆)
6 eqid 2824 . . . . . . . . 9 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
72, 3, 4, 5, 6isunit 19410 . . . . . . . 8 (𝑥𝑉 ↔ (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆)))
81, 7sylib 221 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑆) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑆)))
98simpld 498 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑆))
10 subrguss.1 . . . . . . . 8 𝑆 = (𝑅s 𝐴)
11 eqid 2824 . . . . . . . 8 (1r𝑅) = (1r𝑅)
1210, 11subrg1 19545 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
1312adantr 484 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (1r𝑅) = (1r𝑆))
149, 13breqtrrd 5080 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑆)(1r𝑅))
15 eqid 2824 . . . . . . . 8 (∥r𝑅) = (∥r𝑅)
1610, 15, 4subrgdvds 19549 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (∥r𝑆) ⊆ (∥r𝑅))
1716adantr 484 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∥r𝑆) ⊆ (∥r𝑅))
1817ssbrd 5095 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(∥r𝑆)(1r𝑅) → 𝑥(∥r𝑅)(1r𝑅)))
1914, 18mpd 15 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r𝑅)(1r𝑅))
2010subrgbas 19544 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
2120adantr 484 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 = (Base‘𝑆))
22 eqid 2824 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
2322subrgss 19536 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2423adantr 484 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝐴 ⊆ (Base‘𝑅))
2521, 24eqsstrrd 3992 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (Base‘𝑆) ⊆ (Base‘𝑅))
26 eqid 2824 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
2726, 2unitcl 19412 . . . . . . . 8 (𝑥𝑉𝑥 ∈ (Base‘𝑆))
2827adantl 485 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑆))
2925, 28sseldd 3954 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3010subrgring 19538 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
31 eqid 2824 . . . . . . . . 9 (invr𝑆) = (invr𝑆)
322, 31, 26ringinvcl 19429 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
3330, 32sylan 583 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑆))
3425, 33sseldd 3954 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ (Base‘𝑅))
35 eqid 2824 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
3635, 22opprbas 19382 . . . . . . 7 (Base‘𝑅) = (Base‘(oppr𝑅))
37 eqid 2824 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
38 eqid 2824 . . . . . . 7 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
3936, 37, 38dvdsrmul 19401 . . . . . 6 ((𝑥 ∈ (Base‘𝑅) ∧ ((invr𝑆)‘𝑥) ∈ (Base‘𝑅)) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
4029, 34, 39syl2anc 587 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥))
41 eqid 2824 . . . . . . 7 (.r𝑅) = (.r𝑅)
4222, 41, 35, 38opprmul 19379 . . . . . 6 (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (𝑥(.r𝑅)((invr𝑆)‘𝑥))
43 eqid 2824 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
442, 31, 43, 3unitrinv 19431 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
4530, 44sylan 583 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑆)((invr𝑆)‘𝑥)) = (1r𝑆))
4610, 41ressmulr 16625 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
4746adantr 484 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (.r𝑅) = (.r𝑆))
4847oveqd 7166 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (𝑥(.r𝑆)((invr𝑆)‘𝑥)))
4945, 48, 133eqtr4d 2869 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (𝑥(.r𝑅)((invr𝑆)‘𝑥)) = (1r𝑅))
5042, 49syl5eq 2871 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (((invr𝑆)‘𝑥)(.r‘(oppr𝑅))𝑥) = (1r𝑅))
5140, 50breqtrd 5078 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥(∥r‘(oppr𝑅))(1r𝑅))
52 subrguss.2 . . . . 5 𝑈 = (Unit‘𝑅)
5352, 11, 15, 35, 37isunit 19410 . . . 4 (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑅))(1r𝑅)))
5419, 51, 53sylanbrc 586 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → 𝑥𝑈)
5554ex 416 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝑉𝑥𝑈))
5655ssrdv 3959 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wss 3919   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  s cress 16484  .rcmulr 16566  1rcur 19251  Ringcrg 19297  opprcoppr 19375  rcdsr 19391  Unitcui 19392  invrcinvr 19424  SubRingcsubrg 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-subrg 19533
This theorem is referenced by:  subrginv  19551  subrgdv  19552  subrgunit  19553  subrgugrp  19554  issubdrg  19560  zringunit  20635
  Copyright terms: Public domain W3C validator