Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege91d Structured version   Visualization version   GIF version

Theorem frege91d 41248
Description: If 𝐵 follows 𝐴 in 𝑅 then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 41451. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege91d.r (𝜑𝑅 ∈ V)
frege91d.ac (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
frege91d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege91d
StepHypRef Expression
1 frege91d.ac . 2 (𝜑𝐴𝑅𝐵)
2 frege91d.r . . . 4 (𝜑𝑅 ∈ V)
3 trclfvlb 14647 . . . 4 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
42, 3syl 17 . . 3 (𝜑𝑅 ⊆ (t+‘𝑅))
54ssbrd 5113 . 2 (𝜑 → (𝐴𝑅𝐵𝐴(t+‘𝑅)𝐵))
61, 5mpd 15 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-trcl 14626
This theorem is referenced by:  frege102d  41251  frege129d  41260
  Copyright terms: Public domain W3C validator