MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   GIF version

Theorem lhop2 24866
Description: L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a (𝜑𝐴 ∈ ℝ*)
lhop2.b (𝜑𝐵 ∈ ℝ)
lhop2.l (𝜑𝐴 < 𝐵)
lhop2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop2.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop2.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop2.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop2.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop2.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop2.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop2.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop2.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop2
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 12520 . . 3 ℚ ⊆ ℝ
2 lhop2.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 lhop2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10848 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 lhop2.l . . . 4 (𝜑𝐴 < 𝐵)
6 qbtwnxr 12755 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
72, 4, 5, 6syl3anc 1373 . . 3 (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
8 ssrexv 3954 . . 3 (ℚ ⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵)))
91, 7, 8mpsyl 68 . 2 (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵))
10 simpr 488 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵))
11 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ)
1211adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ)
133ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ)
14 elioore 12930 . . . . . . . 8 (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ)
1514adantl 485 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ)
16 iooneg 13024 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1712, 13, 15, 16syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1810, 17mpbid 235 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
1918adantrr 717 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
20 lhop2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2120ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
22 elioore 12930 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ)
2322adantl 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ)
2423recnd 10826 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ)
2524negnegd 11145 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥)
26 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎))
2725, 26eqeltrd 2831 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎))
2811adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ)
293ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ)
3023renegcld 11224 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ)
31 iooneg 13024 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3228, 29, 30, 31syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3327, 32mpbird 260 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵))
342adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 ∈ ℝ*)
3511rexrd 10848 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ*)
36 simprrl 781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 < 𝑎)
3734, 35, 36xrltled 12705 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴𝑎)
38 iooss1 12935 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
3934, 37, 38syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4039sselda 3887 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
4133, 40syldan 594 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵))
4221, 41ffvelrnd 6883 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ)
4342recnd 10826 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ)
44 lhop2.g . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
4544ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
4645, 41ffvelrnd 6883 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ)
4746recnd 10826 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ)
48 lhop2.gn0 . . . . . . 7 (𝜑 → ¬ 0 ∈ ran 𝐺)
4948ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺)
5044adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
51 ax-resscn 10751 . . . . . . . . . . . 12 ℝ ⊆ ℂ
52 fss 6540 . . . . . . . . . . . 12 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5350, 51, 52sylancl 589 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5453adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5554ffnd 6524 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵))
56 fnfvelrn 6879 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺)
5755, 41, 56syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺)
58 eleq1 2818 . . . . . . . 8 ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
5957, 58syl5ibcom 248 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺))
6059necon3bd 2946 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0))
6149, 60mpd 15 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0)
6243, 47, 61divcld 11573 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ)
63 limcresi 24736 . . . . . 6 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵)
64 ioossre 12961 . . . . . . . 8 (𝑎(,)𝐵) ⊆ ℝ
65 resmpt 5890 . . . . . . . 8 ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧))
6664, 65ax-mp 5 . . . . . . 7 ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)
6766oveq1i 7201 . . . . . 6 (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
6863, 67sseqtri 3923 . . . . 5 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
69 eqid 2736 . . . . . . . 8 (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧)
7069negcncf 23773 . . . . . . 7 (ℝ ⊆ ℂ → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
7151, 70mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
723adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ)
73 negeq 11035 . . . . . 6 (𝑧 = 𝐵 → -𝑧 = -𝐵)
7471, 72, 73cnmptlimc 24741 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵))
7568, 74sseldi 3885 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵))
7672renegcld 11224 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ℝ)
7711renegcld 11224 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ)
7877rexrd 10848 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ*)
79 simprrr 782 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 < 𝐵)
8011, 72ltnegd 11375 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎))
8179, 80mpbid 235 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 < -𝑎)
8242fmpttd 6910 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
8346fmpttd 6910 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
84 reelprrecn 10786 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
8584a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ℝ ∈ {ℝ, ℂ})
86 neg1cn 11909 . . . . . . . . . . 11 -1 ∈ ℂ
8786a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ)
8820adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
8988ffvelrnda 6882 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
9089recnd 10826 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
91 fvexd 6710 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V)
92 1cnd 10793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ)
93 simpr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
9493recnd 10826 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
95 1cnd 10793 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9685dvmptid 24808 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
97 ioossre 12961 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ⊆ ℝ
9897a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ)
99 eqid 2736 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099tgioo2 23654 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 23617 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran (,)))
10385, 94, 95, 96, 98, 100, 99, 102dvmptres 24814 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1))
10485, 24, 92, 103dvmptneg 24817 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1))
10588feqmptd 6758 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
106105oveq2d 7207 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
107 dvf 24758 . . . . . . . . . . . . 13 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
108 lhop2.if . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
109108adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110109feq2d 6509 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
111107, 110mpbii 236 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
112111feqmptd 6758 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
113106, 112eqtr3d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
114 fveq2 6695 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐹𝑦) = (𝐹‘-𝑥))
115 fveq2 6695 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥))
11685, 85, 41, 87, 90, 91, 104, 113, 114, 115dvmptco 24823 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)))
117111adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
118117, 41ffvelrnd 6883 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ)
119118, 87mulcomd 10819 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐹)‘-𝑥)))
120118mulm1d 11249 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥))
121119, 120eqtrd 2771 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥))
122121mpteq2dva 5135 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
123116, 122eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
124123dmeqd 5759 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
125 negex 11041 . . . . . . . 8 -((ℝ D 𝐹)‘-𝑥) ∈ V
126 eqid 2736 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))
127125, 126dmmpti 6500 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎)
128124, 127eqtrdi 2787 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎))
12950ffvelrnda 6882 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℝ)
130129recnd 10826 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℂ)
131 fvexd 6710 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V)
13250feqmptd 6758 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)))
133132oveq2d 7207 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))))
134 dvf 24758 . . . . . . . . . . . . 13 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
135 lhop2.ig . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
136135adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
137136feq2d 6509 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
138134, 137mpbii 236 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
139138feqmptd 6758 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
140133, 139eqtr3d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
141 fveq2 6695 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐺𝑦) = (𝐺‘-𝑥))
142 fveq2 6695 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥))
14385, 85, 41, 87, 130, 131, 104, 140, 141, 142dvmptco 24823 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)))
144138adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
145144, 41ffvelrnd 6883 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ)
146145, 87mulcomd 10819 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐺)‘-𝑥)))
147145mulm1d 11249 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥))
148146, 147eqtrd 2771 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥))
149148mpteq2dva 5135 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
150143, 149eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
151150dmeqd 5759 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
152 negex 11041 . . . . . . . 8 -((ℝ D 𝐺)‘-𝑥) ∈ V
153 eqid 2736 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))
154152, 153dmmpti 6500 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎)
155151, 154eqtrdi 2787 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎))
15641adantrr 717 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
157 limcresi 24736 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵)
158 resmpt 5890 . . . . . . . . . . 11 ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥))
15997, 158ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)
160159oveq1i 7201 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
161157, 160sseqtri 3923 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
16272recnd 10826 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℂ)
163162negnegd 11145 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 = 𝐵)
164 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥)
165164negcncf 23773 . . . . . . . . . . 11 (ℝ ⊆ ℂ → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
16651, 165mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
167 negeq 11035 . . . . . . . . . 10 (𝑥 = -𝐵 → -𝑥 = --𝐵)
168166, 76, 167cnmptlimc 24741 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
169163, 168eqeltrrd 2832 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
170161, 169sseldi 3885 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵))
171 lhop2.f0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
172171adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐹 lim 𝐵))
173105oveq1d 7206 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐹 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
174172, 173eleqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
175 eliooord 12959 . . . . . . . . . . . . . 14 (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥𝑥 < -𝑎))
176175adantl 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥𝑥 < -𝑎))
177176simpld 498 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥)
17829, 23, 177ltnegcon1d 11377 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵)
17930, 178ltned 10933 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥𝐵)
180179neneqd 2937 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵)
181180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0))
182181impr 458 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0)
183156, 90, 170, 174, 114, 182limcco 24744 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) lim -𝐵))
184 lhop2.g0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
185184adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐺 lim 𝐵))
186132oveq1d 7206 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐺 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
187185, 186eleqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
188180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0))
189188impr 458 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0)
190156, 130, 170, 187, 141, 189limcco 24744 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) lim -𝐵))
19157fmpttd 6910 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺)
192191frnd 6531 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
19348adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺)
194192, 193ssneldd 3890 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
195 lhop2.gd0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
196195adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D 𝐺))
197150rneqd 5792 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
198197eleq2d 2816 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))))
199153, 152elrnmpti 5814 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥))
200 eqcom 2743 . . . . . . . . . . 11 (0 = -((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0)
201145negeq0d 11146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0))
202144ffnd 6524 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
203 fnfvelrn 6879 . . . . . . . . . . . . . 14 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
204202, 41, 203syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
205 eleq1 2818 . . . . . . . . . . . . 13 (((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
206204, 205syl5ibcom 248 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
207201, 206sylbird 263 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
208200, 207syl5bi 245 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
209208rexlimdva 3193 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
210199, 209syl5bi 245 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺)))
211198, 210sylbid 243 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺)))
212196, 211mtod 201 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))))
213111ffvelrnda 6882 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
214138ffvelrnda 6882 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
215195ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
216138ffnd 6524 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
217 fnfvelrn 6879 . . . . . . . . . . . . 13 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
218216, 217sylan 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
219 eleq1 2818 . . . . . . . . . . . 12 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
220218, 219syl5ibcom 248 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
221220necon3bd 2946 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
222215, 221mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
223213, 214, 222divcld 11573 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
224 lhop2.c . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
225224adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
226 fveq2 6695 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥))
227 fveq2 6695 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥))
228226, 227oveq12d 7209 . . . . . . . 8 (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
229180pm2.21d 121 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶))
230229impr 458 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)
231156, 223, 170, 225, 228, 230limcco 24744 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
232 nfcv 2897 . . . . . . . . . . . . 13 𝑥
233 nfcv 2897 . . . . . . . . . . . . 13 𝑥 D
234 nfmpt1 5138 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
235232, 233, 234nfov 7221 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))
236 nfcv 2897 . . . . . . . . . . . 12 𝑥𝑦
237235, 236nffv 6705 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦)
238 nfcv 2897 . . . . . . . . . . 11 𝑥 /
239 nfmpt1 5138 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
240232, 233, 239nfov 7221 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
241240, 236nffv 6705 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)
242237, 238, 241nfov 7221 . . . . . . . . . 10 𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))
243 nfcv 2897 . . . . . . . . . 10 𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
244 fveq2 6695 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥))
245 fveq2 6695 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
246244, 245oveq12d 7209 . . . . . . . . . 10 (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
247242, 243, 246cbvmpt 5141 . . . . . . . . 9 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
248123fveq1d 6697 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥))
249126fvmpt2 6807 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
250125, 249mpan2 691 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
251248, 250sylan9eq 2791 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
252150fveq1d 6697 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥))
253153fvmpt2 6807 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
254152, 253mpan2 691 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
255252, 254sylan9eq 2791 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
256251, 255oveq12d 7209 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)))
257195ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺))
258206necon3bd 2946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0))
259257, 258mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)
260118, 145, 259div2negd 11588 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
261256, 260eqtrd 2771 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
262261mpteq2dva 5135 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
263247, 262syl5eq 2783 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
264263oveq1d 7206 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
265231, 264eleqtrrd 2834 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵))
26676, 78, 81, 82, 83, 128, 155, 183, 190, 194, 212, 265lhop1 24865 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵))
267 nffvmpt1 6706 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦)
268 nffvmpt1 6706 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)
269267, 238, 268nfov 7221 . . . . . . . 8 𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))
270 nfcv 2897 . . . . . . . 8 𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
271 fveq2 6695 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥))
272 fveq2 6695 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
273271, 272oveq12d 7209 . . . . . . . 8 (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
274269, 270, 273cbvmpt 5141 . . . . . . 7 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
275 fvex 6708 . . . . . . . . . 10 (𝐹‘-𝑥) ∈ V
276 eqid 2736 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
277276fvmpt2 6807 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
27826, 275, 277sylancl 589 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
279 fvex 6708 . . . . . . . . . 10 (𝐺‘-𝑥) ∈ V
280 eqid 2736 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
281280fvmpt2 6807 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
28226, 279, 281sylancl 589 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
283278, 282oveq12d 7209 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥)))
284283mpteq2dva 5135 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
285274, 284syl5eq 2783 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
286285oveq1d 7206 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
287266, 286eleqtrd 2833 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
288 negeq 11035 . . . . . 6 (𝑥 = -𝑧 → -𝑥 = --𝑧)
289288fveq2d 6699 . . . . 5 (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧))
290288fveq2d 6699 . . . . 5 (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧))
291289, 290oveq12d 7209 . . . 4 (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧)))
29276adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ)
293 eliooord 12959 . . . . . . . . . . 11 (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧𝑧 < 𝐵))
294293adantl 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧𝑧 < 𝐵))
295294simprd 499 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵)
29615, 13ltnegd 11375 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧))
297295, 296mpbid 235 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧)
298292, 297gtned 10932 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵)
299298neneqd 2937 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵)
300299pm2.21d 121 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶))
301300impr 458 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)
30219, 62, 75, 287, 291, 301limcco 24744 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵))
30315recnd 10826 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ)
304303negnegd 11145 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧)
305304fveq2d 6699 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹𝑧))
306304fveq2d 6699 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺𝑧))
307305, 306oveq12d 7209 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
308307mpteq2dva 5135 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
309308oveq1d 7206 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
31039resmptd 5893 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
311310oveq1d 7206 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
312 fss 6540 . . . . . . . . 9 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31388, 51, 312sylancl 589 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
314313ffvelrnda 6882 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
31553ffvelrnda 6882 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
31648ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
31750ffnd 6524 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵))
318 fnfvelrn 6879 . . . . . . . . . . 11 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
319317, 318sylan 583 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
320 eleq1 2818 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
321319, 320syl5ibcom 248 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
322321necon3bd 2946 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
323316, 322mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
324314, 315, 323divcld 11573 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
325324fmpttd 6910 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
326 ioossre 12961 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
327326, 51sstri 3896 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
328327a1i 11 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ)
329 eqid 2736 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
330 ssun2 4073 . . . . . . 7 {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})
331 snssg 4684 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
33272, 331syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
333330, 332mpbiri 261 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}))
33499cnfldtopon 23634 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
335326a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ)
33672snssd 4708 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ ℝ)
337335, 336unssd 4086 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
338337, 51sstrdi 3899 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ)
339 resttopon 22012 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
340334, 338, 339sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
341 topontop 21764 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
342340, 341syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
343 indi 4174 . . . . . . . . . 10 ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵}))
344 pnfxr 10852 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
345344a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → +∞ ∈ ℝ*)
3464adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ*)
347 iooin 12934 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
34835, 345, 34, 346, 347syl22anc 839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
349 xrltnle 10865 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35034, 35, 349syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35136, 350mpbid 235 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 𝑎𝐴)
352351iffalsed 4436 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
35372ltpnfd 12678 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 < +∞)
354 xrltnle 10865 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
355346, 344, 354sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
356353, 355mpbid 235 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵)
357356iffalsed 4436 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵)
358352, 357oveq12d 7209 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵))
359348, 358eqtrd 2771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵))
360 elioopnf 12996 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ* → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36135, 360syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36272, 79, 361mpbir2and 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞))
363362snssd 4708 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞))
364 sseqin2 4116 . . . . . . . . . . . 12 ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
365363, 364sylib 221 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
366359, 365uneq12d 4064 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
367343, 366syl5eq 2783 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
368 retop 23613 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
369 reex 10785 . . . . . . . . . . . 12 ℝ ∈ V
370369ssex 5199 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
371337, 370syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
372 iooretop 23617 . . . . . . . . . . 11 (𝑎(,)+∞) ∈ (topGen‘ran (,))
373372a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran (,)))
374 elrestr 16887 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
375368, 371, 373, 374mp3an2i 1468 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
376367, 375eqeltrrd 2832 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
377 eqid 2736 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
37899, 377rerest 23655 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
379337, 378syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
380376, 379eleqtrrd 2834 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
381 isopn3i 21933 . . . . . . 7 ((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
382342, 380, 381syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
383333, 382eleqtrrd 2834 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})))
384325, 39, 328, 99, 329, 383limcres 24737 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
385309, 311, 3843eqtr2d 2777 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
386302, 385eleqtrd 2833 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
3879, 386rexlimddv 3200 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932  wrex 3052  Vcvv 3398  cun 3851  cin 3852  wss 3853  ifcif 4425  {csn 4527  {cpr 4529   class class class wbr 5039  cmpt 5120  dom cdm 5536  ran crn 5537  cres 5538   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699  +∞cpnf 10829  *cxr 10831   < clt 10832  cle 10833  -cneg 11028   / cdiv 11454  cq 12509  (,)cioo 12900  t crest 16879  TopOpenctopn 16880  topGenctg 16896  fldccnfld 20317  Topctop 21744  TopOnctopon 21761  intcnt 21868  cnccncf 23727   lim climc 24713   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-cmp 22238  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718
This theorem is referenced by:  lhop  24867  fourierdlem60  43325
  Copyright terms: Public domain W3C validator