MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   GIF version

Theorem lhop2 26068
Description: L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a (𝜑𝐴 ∈ ℝ*)
lhop2.b (𝜑𝐵 ∈ ℝ)
lhop2.l (𝜑𝐴 < 𝐵)
lhop2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop2.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop2.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop2.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop2.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop2.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop2.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop2.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop2.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop2
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 12998 . . 3 ℚ ⊆ ℝ
2 lhop2.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 lhop2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11308 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 lhop2.l . . . 4 (𝜑𝐴 < 𝐵)
6 qbtwnxr 13238 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
72, 4, 5, 6syl3anc 1370 . . 3 (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
8 ssrexv 4064 . . 3 (ℚ ⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵)))
91, 7, 8mpsyl 68 . 2 (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵))
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵))
11 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ)
1211adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ)
133ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ)
14 elioore 13413 . . . . . . . 8 (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ)
1514adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ)
16 iooneg 13507 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1712, 13, 15, 16syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1810, 17mpbid 232 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
1918adantrr 717 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
20 lhop2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2120ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
22 elioore 13413 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ)
2322adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ)
2423recnd 11286 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ)
2524negnegd 11608 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥)
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎))
2725, 26eqeltrd 2838 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎))
2811adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ)
293ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ)
3023renegcld 11687 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ)
31 iooneg 13507 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3228, 29, 30, 31syl3anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3327, 32mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵))
342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 ∈ ℝ*)
3511rexrd 11308 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ*)
36 simprrl 781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 < 𝑎)
3734, 35, 36xrltled 13188 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴𝑎)
38 iooss1 13418 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
3934, 37, 38syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4039sselda 3994 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
4133, 40syldan 591 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵))
4221, 41ffvelcdmd 7104 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ)
4342recnd 11286 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ)
44 lhop2.g . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
4544ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
4645, 41ffvelcdmd 7104 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ)
4746recnd 11286 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ)
48 lhop2.gn0 . . . . . . 7 (𝜑 → ¬ 0 ∈ ran 𝐺)
4948ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺)
5044adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
51 ax-resscn 11209 . . . . . . . . . . . 12 ℝ ⊆ ℂ
52 fss 6752 . . . . . . . . . . . 12 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5350, 51, 52sylancl 586 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5453adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5554ffnd 6737 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵))
56 fnfvelrn 7099 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺)
5755, 41, 56syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺)
58 eleq1 2826 . . . . . . . 8 ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
5957, 58syl5ibcom 245 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺))
6059necon3bd 2951 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0))
6149, 60mpd 15 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0)
6243, 47, 61divcld 12040 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ)
63 limcresi 25934 . . . . . 6 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵)
64 ioossre 13444 . . . . . . . 8 (𝑎(,)𝐵) ⊆ ℝ
65 resmpt 6056 . . . . . . . 8 ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧))
6664, 65ax-mp 5 . . . . . . 7 ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)
6766oveq1i 7440 . . . . . 6 (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
6863, 67sseqtri 4031 . . . . 5 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
69 eqid 2734 . . . . . . . 8 (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧)
7069negcncf 24961 . . . . . . 7 (ℝ ⊆ ℂ → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
7151, 70mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
723adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ)
73 negeq 11497 . . . . . 6 (𝑧 = 𝐵 → -𝑧 = -𝐵)
7471, 72, 73cnmptlimc 25939 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵))
7568, 74sselid 3992 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵))
7672renegcld 11687 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ℝ)
7711renegcld 11687 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ)
7877rexrd 11308 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ*)
79 simprrr 782 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 < 𝐵)
8011, 72ltnegd 11838 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎))
8179, 80mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 < -𝑎)
8242fmpttd 7134 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
8346fmpttd 7134 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
84 reelprrecn 11244 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
8584a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ℝ ∈ {ℝ, ℂ})
86 neg1cn 12377 . . . . . . . . . . 11 -1 ∈ ℂ
8786a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ)
8820adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
8988ffvelcdmda 7103 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
9089recnd 11286 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
91 fvexd 6921 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V)
92 1cnd 11253 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ)
93 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
9493recnd 11286 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
95 1cnd 11253 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9685dvmptid 26009 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
97 ioossre 13444 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ⊆ ℝ
9897a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ)
99 eqid 2734 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099tgioo2 24838 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 24801 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran (,)))
10385, 94, 95, 96, 98, 100, 99, 102dvmptres 26015 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1))
10485, 24, 92, 103dvmptneg 26018 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1))
10588feqmptd 6976 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
106105oveq2d 7446 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
107 dvf 25956 . . . . . . . . . . . . 13 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
108 lhop2.if . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
109108adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110109feq2d 6722 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
111107, 110mpbii 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
112111feqmptd 6976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
113106, 112eqtr3d 2776 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
114 fveq2 6906 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐹𝑦) = (𝐹‘-𝑥))
115 fveq2 6906 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥))
11685, 85, 41, 87, 90, 91, 104, 113, 114, 115dvmptco 26024 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)))
117111adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
118117, 41ffvelcdmd 7104 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ)
119118, 87mulcomd 11279 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐹)‘-𝑥)))
120118mulm1d 11712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥))
121119, 120eqtrd 2774 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥))
122121mpteq2dva 5247 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
123116, 122eqtrd 2774 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
124123dmeqd 5918 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
125 negex 11503 . . . . . . . 8 -((ℝ D 𝐹)‘-𝑥) ∈ V
126 eqid 2734 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))
127125, 126dmmpti 6712 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎)
128124, 127eqtrdi 2790 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎))
12950ffvelcdmda 7103 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℝ)
130129recnd 11286 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℂ)
131 fvexd 6921 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V)
13250feqmptd 6976 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)))
133132oveq2d 7446 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))))
134 dvf 25956 . . . . . . . . . . . . 13 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
135 lhop2.ig . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
136135adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
137136feq2d 6722 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
138134, 137mpbii 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
139138feqmptd 6976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
140133, 139eqtr3d 2776 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
141 fveq2 6906 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐺𝑦) = (𝐺‘-𝑥))
142 fveq2 6906 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥))
14385, 85, 41, 87, 130, 131, 104, 140, 141, 142dvmptco 26024 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)))
144138adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
145144, 41ffvelcdmd 7104 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ)
146145, 87mulcomd 11279 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐺)‘-𝑥)))
147145mulm1d 11712 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥))
148146, 147eqtrd 2774 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥))
149148mpteq2dva 5247 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
150143, 149eqtrd 2774 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
151150dmeqd 5918 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
152 negex 11503 . . . . . . . 8 -((ℝ D 𝐺)‘-𝑥) ∈ V
153 eqid 2734 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))
154152, 153dmmpti 6712 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎)
155151, 154eqtrdi 2790 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎))
15641adantrr 717 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
157 limcresi 25934 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵)
158 resmpt 6056 . . . . . . . . . . 11 ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥))
15997, 158ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)
160159oveq1i 7440 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
161157, 160sseqtri 4031 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
16272recnd 11286 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℂ)
163162negnegd 11608 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 = 𝐵)
164 eqid 2734 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥)
165164negcncf 24961 . . . . . . . . . . 11 (ℝ ⊆ ℂ → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
16651, 165mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
167 negeq 11497 . . . . . . . . . 10 (𝑥 = -𝐵 → -𝑥 = --𝐵)
168166, 76, 167cnmptlimc 25939 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
169163, 168eqeltrrd 2839 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
170161, 169sselid 3992 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵))
171 lhop2.f0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
172171adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐹 lim 𝐵))
173105oveq1d 7445 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐹 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
174172, 173eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
175 eliooord 13442 . . . . . . . . . . . . . 14 (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥𝑥 < -𝑎))
176175adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥𝑥 < -𝑎))
177176simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥)
17829, 23, 177ltnegcon1d 11840 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵)
17930, 178ltned 11394 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥𝐵)
180179neneqd 2942 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵)
181180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0))
182181impr 454 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0)
183156, 90, 170, 174, 114, 182limcco 25942 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) lim -𝐵))
184 lhop2.g0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
185184adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐺 lim 𝐵))
186132oveq1d 7445 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐺 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
187185, 186eleqtrd 2840 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
188180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0))
189188impr 454 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0)
190156, 130, 170, 187, 141, 189limcco 25942 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) lim -𝐵))
19157fmpttd 7134 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺)
192191frnd 6744 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
19348adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺)
194192, 193ssneldd 3997 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
195 lhop2.gd0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
196195adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D 𝐺))
197150rneqd 5951 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
198197eleq2d 2824 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))))
199153, 152elrnmpti 5975 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥))
200 eqcom 2741 . . . . . . . . . . 11 (0 = -((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0)
201145negeq0d 11609 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0))
202144ffnd 6737 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
203 fnfvelrn 7099 . . . . . . . . . . . . . 14 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
204202, 41, 203syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
205 eleq1 2826 . . . . . . . . . . . . 13 (((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
206204, 205syl5ibcom 245 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
207201, 206sylbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
208200, 207biimtrid 242 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
209208rexlimdva 3152 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
210199, 209biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺)))
211198, 210sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺)))
212196, 211mtod 198 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))))
213111ffvelcdmda 7103 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
214138ffvelcdmda 7103 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
215195ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
216138ffnd 6737 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
217 fnfvelrn 7099 . . . . . . . . . . . . 13 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
218216, 217sylan 580 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
219 eleq1 2826 . . . . . . . . . . . 12 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
220218, 219syl5ibcom 245 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
221220necon3bd 2951 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
222215, 221mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
223213, 214, 222divcld 12040 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
224 lhop2.c . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
225224adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
226 fveq2 6906 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥))
227 fveq2 6906 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥))
228226, 227oveq12d 7448 . . . . . . . 8 (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
229180pm2.21d 121 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶))
230229impr 454 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)
231156, 223, 170, 225, 228, 230limcco 25942 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
232 nfcv 2902 . . . . . . . . . . . . 13 𝑥
233 nfcv 2902 . . . . . . . . . . . . 13 𝑥 D
234 nfmpt1 5255 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
235232, 233, 234nfov 7460 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))
236 nfcv 2902 . . . . . . . . . . . 12 𝑥𝑦
237235, 236nffv 6916 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦)
238 nfcv 2902 . . . . . . . . . . 11 𝑥 /
239 nfmpt1 5255 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
240232, 233, 239nfov 7460 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
241240, 236nffv 6916 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)
242237, 238, 241nfov 7460 . . . . . . . . . 10 𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))
243 nfcv 2902 . . . . . . . . . 10 𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
244 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥))
245 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
246244, 245oveq12d 7448 . . . . . . . . . 10 (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
247242, 243, 246cbvmpt 5258 . . . . . . . . 9 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
248123fveq1d 6908 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥))
249126fvmpt2 7026 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
250125, 249mpan2 691 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
251248, 250sylan9eq 2794 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
252150fveq1d 6908 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥))
253153fvmpt2 7026 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
254152, 253mpan2 691 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
255252, 254sylan9eq 2794 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
256251, 255oveq12d 7448 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)))
257195ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺))
258206necon3bd 2951 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0))
259257, 258mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)
260118, 145, 259div2negd 12055 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
261256, 260eqtrd 2774 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
262261mpteq2dva 5247 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
263247, 262eqtrid 2786 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
264263oveq1d 7445 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
265231, 264eleqtrrd 2841 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵))
26676, 78, 81, 82, 83, 128, 155, 183, 190, 194, 212, 265lhop1 26067 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵))
267 nffvmpt1 6917 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦)
268 nffvmpt1 6917 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)
269267, 238, 268nfov 7460 . . . . . . . 8 𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))
270 nfcv 2902 . . . . . . . 8 𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
271 fveq2 6906 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥))
272 fveq2 6906 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
273271, 272oveq12d 7448 . . . . . . . 8 (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
274269, 270, 273cbvmpt 5258 . . . . . . 7 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
275 fvex 6919 . . . . . . . . . 10 (𝐹‘-𝑥) ∈ V
276 eqid 2734 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
277276fvmpt2 7026 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
27826, 275, 277sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
279 fvex 6919 . . . . . . . . . 10 (𝐺‘-𝑥) ∈ V
280 eqid 2734 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
281280fvmpt2 7026 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
28226, 279, 281sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
283278, 282oveq12d 7448 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥)))
284283mpteq2dva 5247 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
285274, 284eqtrid 2786 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
286285oveq1d 7445 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
287266, 286eleqtrd 2840 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
288 negeq 11497 . . . . . 6 (𝑥 = -𝑧 → -𝑥 = --𝑧)
289288fveq2d 6910 . . . . 5 (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧))
290288fveq2d 6910 . . . . 5 (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧))
291289, 290oveq12d 7448 . . . 4 (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧)))
29276adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ)
293 eliooord 13442 . . . . . . . . . . 11 (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧𝑧 < 𝐵))
294293adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧𝑧 < 𝐵))
295294simprd 495 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵)
29615, 13ltnegd 11838 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧))
297295, 296mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧)
298292, 297gtned 11393 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵)
299298neneqd 2942 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵)
300299pm2.21d 121 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶))
301300impr 454 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)
30219, 62, 75, 287, 291, 301limcco 25942 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵))
30315recnd 11286 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ)
304303negnegd 11608 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧)
305304fveq2d 6910 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹𝑧))
306304fveq2d 6910 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺𝑧))
307305, 306oveq12d 7448 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
308307mpteq2dva 5247 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
309308oveq1d 7445 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
31039resmptd 6059 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
311310oveq1d 7445 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
312 fss 6752 . . . . . . . . 9 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31388, 51, 312sylancl 586 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
314313ffvelcdmda 7103 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
31553ffvelcdmda 7103 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
31648ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
31750ffnd 6737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵))
318 fnfvelrn 7099 . . . . . . . . . . 11 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
319317, 318sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
320 eleq1 2826 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
321319, 320syl5ibcom 245 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
322321necon3bd 2951 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
323316, 322mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
324314, 315, 323divcld 12040 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
325324fmpttd 7134 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
326 ioossre 13444 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
327326, 51sstri 4004 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
328327a1i 11 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ)
329 eqid 2734 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
330 ssun2 4188 . . . . . . 7 {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})
331 snssg 4787 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
33272, 331syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
333330, 332mpbiri 258 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}))
33499cnfldtopon 24818 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
335326a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ)
33672snssd 4813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ ℝ)
337335, 336unssd 4201 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
338337, 51sstrdi 4007 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ)
339 resttopon 23184 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
340334, 338, 339sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
341 topontop 22934 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
342340, 341syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
343 indi 4289 . . . . . . . . . 10 ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵}))
344 pnfxr 11312 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
345344a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → +∞ ∈ ℝ*)
3464adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ*)
347 iooin 13417 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
34835, 345, 34, 346, 347syl22anc 839 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
349 xrltnle 11325 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35034, 35, 349syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35136, 350mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 𝑎𝐴)
352351iffalsed 4541 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
35372ltpnfd 13160 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 < +∞)
354 xrltnle 11325 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
355346, 344, 354sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
356353, 355mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵)
357356iffalsed 4541 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵)
358352, 357oveq12d 7448 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵))
359348, 358eqtrd 2774 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵))
360 elioopnf 13479 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ* → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36135, 360syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36272, 79, 361mpbir2and 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞))
363362snssd 4813 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞))
364 sseqin2 4230 . . . . . . . . . . . 12 ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
365363, 364sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
366359, 365uneq12d 4178 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
367343, 366eqtrid 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
368 retop 24797 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
369 reex 11243 . . . . . . . . . . . 12 ℝ ∈ V
370369ssex 5326 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
371337, 370syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
372 iooretop 24801 . . . . . . . . . . 11 (𝑎(,)+∞) ∈ (topGen‘ran (,))
373372a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran (,)))
374 elrestr 17474 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
375368, 371, 373, 374mp3an2i 1465 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
376367, 375eqeltrrd 2839 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
377 eqid 2734 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
37899, 377rerest 24839 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
379337, 378syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
380376, 379eleqtrrd 2841 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
381 isopn3i 23105 . . . . . . 7 ((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
382342, 380, 381syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
383333, 382eleqtrrd 2841 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})))
384325, 39, 328, 99, 329, 383limcres 25935 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
385309, 311, 3843eqtr2d 2780 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
386302, 385eleqtrd 2840 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
3879, 386rexlimddv 3158 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wrex 3067  Vcvv 3477  cun 3960  cin 3961  wss 3962  ifcif 4530  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  -cneg 11490   / cdiv 11917  cq 12987  (,)cioo 13383  t crest 17466  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  Topctop 22914  TopOnctopon 22931  intcnt 23040  cnccncf 24915   lim climc 25911   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  lhop  26069  fourierdlem60  46121
  Copyright terms: Public domain W3C validator