MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   GIF version

Theorem lhop2 26074
Description: L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a (𝜑𝐴 ∈ ℝ*)
lhop2.b (𝜑𝐵 ∈ ℝ)
lhop2.l (𝜑𝐴 < 𝐵)
lhop2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop2.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop2.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop2.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop2.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
lhop2.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
lhop2.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop2.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop2.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
Assertion
Ref Expression
lhop2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop2
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 13024 . . 3 ℚ ⊆ ℝ
2 lhop2.a . . . 4 (𝜑𝐴 ∈ ℝ*)
3 lhop2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 11340 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 lhop2.l . . . 4 (𝜑𝐴 < 𝐵)
6 qbtwnxr 13262 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
72, 4, 5, 6syl3anc 1371 . . 3 (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵))
8 ssrexv 4078 . . 3 (ℚ ⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵)))
91, 7, 8mpsyl 68 . 2 (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎𝑎 < 𝐵))
10 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵))
11 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ)
1211adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ)
133ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ)
14 elioore 13437 . . . . . . . 8 (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ)
1514adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ)
16 iooneg 13531 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1712, 13, 15, 16syl3anc 1371 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎)))
1810, 17mpbid 232 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
1918adantrr 716 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎))
20 lhop2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
2120ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
22 elioore 13437 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ)
2322adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ)
2423recnd 11318 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ)
2524negnegd 11638 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥)
26 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎))
2725, 26eqeltrd 2844 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎))
2811adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ)
293ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ)
3023renegcld 11717 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ)
31 iooneg 13531 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3228, 29, 30, 31syl3anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎)))
3327, 32mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵))
342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 ∈ ℝ*)
3511rexrd 11340 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 ∈ ℝ*)
36 simprrl 780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴 < 𝑎)
3734, 35, 36xrltled 13212 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐴𝑎)
38 iooss1 13442 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
3934, 37, 38syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵))
4039sselda 4008 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
4133, 40syldan 590 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵))
4221, 41ffvelcdmd 7119 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ)
4342recnd 11318 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ)
44 lhop2.g . . . . . . . 8 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
4544ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
4645, 41ffvelcdmd 7119 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ)
4746recnd 11318 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ)
48 lhop2.gn0 . . . . . . 7 (𝜑 → ¬ 0 ∈ ran 𝐺)
4948ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺)
5044adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
51 ax-resscn 11241 . . . . . . . . . . . 12 ℝ ⊆ ℂ
52 fss 6763 . . . . . . . . . . . 12 ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5350, 51, 52sylancl 585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5453adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
5554ffnd 6748 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵))
56 fnfvelrn 7114 . . . . . . . . 9 ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺)
5755, 41, 56syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺)
58 eleq1 2832 . . . . . . . 8 ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
5957, 58syl5ibcom 245 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺))
6059necon3bd 2960 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0))
6149, 60mpd 15 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0)
6243, 47, 61divcld 12070 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ)
63 limcresi 25940 . . . . . 6 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵)
64 ioossre 13468 . . . . . . . 8 (𝑎(,)𝐵) ⊆ ℝ
65 resmpt 6066 . . . . . . . 8 ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧))
6664, 65ax-mp 5 . . . . . . 7 ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)
6766oveq1i 7458 . . . . . 6 (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
6863, 67sseqtri 4045 . . . . 5 ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵)
69 eqid 2740 . . . . . . . 8 (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧)
7069negcncf 24967 . . . . . . 7 (ℝ ⊆ ℂ → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
7151, 70mp1i 13 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ))
723adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ)
73 negeq 11528 . . . . . 6 (𝑧 = 𝐵 → -𝑧 = -𝐵)
7471, 72, 73cnmptlimc 25945 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) lim 𝐵))
7568, 74sselid 4006 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) lim 𝐵))
7672renegcld 11717 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 ∈ ℝ)
7711renegcld 11717 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ)
7877rexrd 11340 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝑎 ∈ ℝ*)
79 simprrr 781 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝑎 < 𝐵)
8011, 72ltnegd 11868 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎))
8179, 80mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → -𝐵 < -𝑎)
8242fmpttd 7149 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
8346fmpttd 7149 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ)
84 reelprrecn 11276 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
8584a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ℝ ∈ {ℝ, ℂ})
86 neg1cn 12407 . . . . . . . . . . 11 -1 ∈ ℂ
8786a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ)
8820adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
8988ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℝ)
9089recnd 11318 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) ∈ ℂ)
91 fvexd 6935 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V)
92 1cnd 11285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ)
93 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
9493recnd 11318 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
95 1cnd 11285 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9685dvmptid 26015 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
97 ioossre 13468 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ⊆ ℝ
9897a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ)
99 eqid 2740 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099tgioo2 24844 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
101 iooretop 24807 . . . . . . . . . . . . 13 (-𝐵(,)-𝑎) ∈ (topGen‘ran (,))
102101a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran (,)))
10385, 94, 95, 96, 98, 100, 99, 102dvmptres 26021 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1))
10485, 24, 92, 103dvmptneg 26024 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1))
10588feqmptd 6990 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)))
106105oveq2d 7464 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))))
107 dvf 25962 . . . . . . . . . . . . 13 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
108 lhop2.if . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
109108adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
110109feq2d 6733 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
111107, 110mpbii 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
112111feqmptd 6990 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
113106, 112eqtr3d 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦)))
114 fveq2 6920 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐹𝑦) = (𝐹‘-𝑥))
115 fveq2 6920 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥))
11685, 85, 41, 87, 90, 91, 104, 113, 114, 115dvmptco 26030 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)))
117111adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
118117, 41ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ)
119118, 87mulcomd 11311 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐹)‘-𝑥)))
120118mulm1d 11742 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥))
121119, 120eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥))
122121mpteq2dva 5266 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
123116, 122eqtrd 2780 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
124123dmeqd 5930 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)))
125 negex 11534 . . . . . . . 8 -((ℝ D 𝐹)‘-𝑥) ∈ V
126 eqid 2740 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))
127125, 126dmmpti 6724 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎)
128124, 127eqtrdi 2796 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎))
12950ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℝ)
130129recnd 11318 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺𝑦) ∈ ℂ)
131 fvexd 6935 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V)
13250feqmptd 6990 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)))
133132oveq2d 7464 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))))
134 dvf 25962 . . . . . . . . . . . . 13 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
135 lhop2.ig . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
136135adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
137136feq2d 6733 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
138134, 137mpbii 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
139138feqmptd 6990 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
140133, 139eqtr3d 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦)))
141 fveq2 6920 . . . . . . . . . 10 (𝑦 = -𝑥 → (𝐺𝑦) = (𝐺‘-𝑥))
142 fveq2 6920 . . . . . . . . . 10 (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥))
14385, 85, 41, 87, 130, 131, 104, 140, 141, 142dvmptco 26030 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)))
144138adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
145144, 41ffvelcdmd 7119 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ)
146145, 87mulcomd 11311 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D 𝐺)‘-𝑥)))
147145mulm1d 11742 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥))
148146, 147eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥))
149148mpteq2dva 5266 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
150143, 149eqtrd 2780 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
151150dmeqd 5930 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
152 negex 11534 . . . . . . . 8 -((ℝ D 𝐺)‘-𝑥) ∈ V
153 eqid 2740 . . . . . . . 8 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))
154152, 153dmmpti 6724 . . . . . . 7 dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎)
155151, 154eqtrdi 2796 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎))
15641adantrr 716 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥𝐵)) → -𝑥 ∈ (𝐴(,)𝐵))
157 limcresi 25940 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵)
158 resmpt 6066 . . . . . . . . . . 11 ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥))
15997, 158ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)
160159oveq1i 7458 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
161157, 160sseqtri 4045 . . . . . . . 8 ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵)
16272recnd 11318 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℂ)
163162negnegd 11638 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 = 𝐵)
164 eqid 2740 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥)
165164negcncf 24967 . . . . . . . . . . 11 (ℝ ⊆ ℂ → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
16651, 165mp1i 13 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ))
167 negeq 11528 . . . . . . . . . 10 (𝑥 = -𝐵 → -𝑥 = --𝐵)
168166, 76, 167cnmptlimc 25945 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
169163, 168eqeltrrd 2845 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) lim -𝐵))
170161, 169sselid 4006 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) lim -𝐵))
171 lhop2.f0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐹 lim 𝐵))
172171adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐹 lim 𝐵))
173105oveq1d 7463 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐹 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
174172, 173eleqtrd 2846 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑦)) lim 𝐵))
175 eliooord 13466 . . . . . . . . . . . . . 14 (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥𝑥 < -𝑎))
176175adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥𝑥 < -𝑎))
177176simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥)
17829, 23, 177ltnegcon1d 11870 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵)
17930, 178ltned 11426 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥𝐵)
180179neneqd 2951 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵)
181180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0))
182181impr 454 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0)
183156, 90, 170, 174, 114, 182limcco 25948 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) lim -𝐵))
184 lhop2.g0 . . . . . . . . 9 (𝜑 → 0 ∈ (𝐺 lim 𝐵))
185184adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ (𝐺 lim 𝐵))
186132oveq1d 7463 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐺 lim 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
187185, 186eleqtrd 2846 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑦)) lim 𝐵))
188180pm2.21d 121 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0))
189188impr 454 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0)
190156, 130, 170, 187, 141, 189limcco 25948 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) lim -𝐵))
19157fmpttd 7149 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺)
192191frnd 6755 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺)
19348adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺)
194192, 193ssneldd 4011 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
195 lhop2.gd0 . . . . . . . 8 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
196195adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D 𝐺))
197150rneqd 5963 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))
198197eleq2d 2830 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))))
199153, 152elrnmpti 5985 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥))
200 eqcom 2747 . . . . . . . . . . 11 (0 = -((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0)
201145negeq0d 11639 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0))
202144ffnd 6748 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
203 fnfvelrn 7114 . . . . . . . . . . . . . 14 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
204202, 41, 203syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺))
205 eleq1 2832 . . . . . . . . . . . . 13 (((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
206204, 205syl5ibcom 245 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
207201, 206sylbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺)))
208200, 207biimtrid 242 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
209208rexlimdva 3161 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺)))
210199, 209biimtrid 242 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺)))
211198, 210sylbid 240 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺)))
212196, 211mtod 198 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))))
213111ffvelcdmda 7118 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
214138ffvelcdmda 7118 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
215195ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
216138ffnd 6748 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
217 fnfvelrn 7114 . . . . . . . . . . . . 13 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
218216, 217sylan 579 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
219 eleq1 2832 . . . . . . . . . . . 12 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
220218, 219syl5ibcom 245 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
221220necon3bd 2960 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
222215, 221mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
223213, 214, 222divcld 12070 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
224 lhop2.c . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
225224adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐵))
226 fveq2 6920 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥))
227 fveq2 6920 . . . . . . . . 9 (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥))
228226, 227oveq12d 7466 . . . . . . . 8 (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
229180pm2.21d 121 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶))
230229impr 454 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)
231156, 223, 170, 225, 228, 230limcco 25948 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
232 nfcv 2908 . . . . . . . . . . . . 13 𝑥
233 nfcv 2908 . . . . . . . . . . . . 13 𝑥 D
234 nfmpt1 5274 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
235232, 233, 234nfov 7478 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))
236 nfcv 2908 . . . . . . . . . . . 12 𝑥𝑦
237235, 236nffv 6930 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦)
238 nfcv 2908 . . . . . . . . . . 11 𝑥 /
239 nfmpt1 5274 . . . . . . . . . . . . 13 𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
240232, 233, 239nfov 7478 . . . . . . . . . . . 12 𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))
241240, 236nffv 6930 . . . . . . . . . . 11 𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)
242237, 238, 241nfov 7478 . . . . . . . . . 10 𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))
243 nfcv 2908 . . . . . . . . . 10 𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
244 fveq2 6920 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥))
245 fveq2 6920 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))
246244, 245oveq12d 7466 . . . . . . . . . 10 (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
247242, 243, 246cbvmpt 5277 . . . . . . . . 9 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)))
248123fveq1d 6922 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥))
249126fvmpt2 7040 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
250125, 249mpan2 690 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
251248, 250sylan9eq 2800 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥))
252150fveq1d 6922 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥))
253153fvmpt2 7040 . . . . . . . . . . . . . 14 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
254152, 253mpan2 690 . . . . . . . . . . . . 13 (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
255252, 254sylan9eq 2800 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥))
256251, 255oveq12d 7466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)))
257195ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺))
258206necon3bd 2960 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0))
259257, 258mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)
260118, 145, 259div2negd 12085 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
261256, 260eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))
262261mpteq2dva 5266 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
263247, 262eqtrid 2792 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))))
264263oveq1d 7463 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) lim -𝐵))
265231, 264eleqtrrd 2847 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) lim -𝐵))
26676, 78, 81, 82, 83, 128, 155, 183, 190, 194, 212, 265lhop1 26073 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵))
267 nffvmpt1 6931 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦)
268 nffvmpt1 6931 . . . . . . . . 9 𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)
269267, 238, 268nfov 7478 . . . . . . . 8 𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))
270 nfcv 2908 . . . . . . . 8 𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
271 fveq2 6920 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥))
272 fveq2 6920 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))
273271, 272oveq12d 7466 . . . . . . . 8 (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
274269, 270, 273cbvmpt 5277 . . . . . . 7 (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)))
275 fvex 6933 . . . . . . . . . 10 (𝐹‘-𝑥) ∈ V
276 eqid 2740 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))
277276fvmpt2 7040 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
27826, 275, 277sylancl 585 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥))
279 fvex 6933 . . . . . . . . . 10 (𝐺‘-𝑥) ∈ V
280 eqid 2740 . . . . . . . . . . 11 (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))
281280fvmpt2 7040 . . . . . . . . . 10 ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
28226, 279, 281sylancl 585 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥))
283278, 282oveq12d 7466 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥)))
284283mpteq2dva 5266 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
285274, 284eqtrid 2792 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))))
286285oveq1d 7463 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) lim -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
287266, 286eleqtrd 2846 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) lim -𝐵))
288 negeq 11528 . . . . . 6 (𝑥 = -𝑧 → -𝑥 = --𝑧)
289288fveq2d 6924 . . . . 5 (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧))
290288fveq2d 6924 . . . . 5 (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧))
291289, 290oveq12d 7466 . . . 4 (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧)))
29276adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ)
293 eliooord 13466 . . . . . . . . . . 11 (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧𝑧 < 𝐵))
294293adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧𝑧 < 𝐵))
295294simprd 495 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵)
29615, 13ltnegd 11868 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧))
297295, 296mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧)
298292, 297gtned 11425 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵)
299298neneqd 2951 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵)
300299pm2.21d 121 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶))
301300impr 454 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)
30219, 62, 75, 287, 291, 301limcco 25948 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵))
30315recnd 11318 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ)
304303negnegd 11638 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧)
305304fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹𝑧))
306304fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺𝑧))
307305, 306oveq12d 7466 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹𝑧) / (𝐺𝑧)))
308307mpteq2dva 5266 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
309308oveq1d 7463 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
31039resmptd 6069 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))))
311310oveq1d 7463 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
312 fss 6763 . . . . . . . . 9 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
31388, 51, 312sylancl 585 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
314313ffvelcdmda 7118 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
31553ffvelcdmda 7118 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
31648ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
31750ffnd 6748 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵))
318 fnfvelrn 7114 . . . . . . . . . . 11 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
319317, 318sylan 579 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
320 eleq1 2832 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
321319, 320syl5ibcom 245 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
322321necon3bd 2960 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
323316, 322mpd 15 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
324314, 315, 323divcld 12070 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
325324fmpttd 7149 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
326 ioossre 13468 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
327326, 51sstri 4018 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
328327a1i 11 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ)
329 eqid 2740 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))
330 ssun2 4202 . . . . . . 7 {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})
331 snssg 4808 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
33272, 331syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵})))
333330, 332mpbiri 258 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}))
33499cnfldtopon 24824 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
335326a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ)
33672snssd 4834 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ ℝ)
337335, 336unssd 4215 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
338337, 51sstrdi 4021 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ)
339 resttopon 23190 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
340334, 338, 339sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})))
341 topontop 22940 . . . . . . . 8 (((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
342340, 341syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top)
343 indi 4303 . . . . . . . . . 10 ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵}))
344 pnfxr 11344 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
345344a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → +∞ ∈ ℝ*)
3464adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ℝ*)
347 iooin 13441 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
34835, 345, 34, 346, 347syl22anc 838 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)))
349 xrltnle 11357 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑎 ∈ ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35034, 35, 349syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎𝐴))
35136, 350mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ 𝑎𝐴)
352351iffalsed 4559 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(𝑎𝐴, 𝐴, 𝑎) = 𝑎)
35372ltpnfd 13184 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 < +∞)
354 xrltnle 11357 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
355346, 344, 354sylancl 585 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
356353, 355mpbid 232 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵)
357356iffalsed 4559 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵)
358352, 357oveq12d 7466 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵))
359348, 358eqtrd 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵))
360 elioopnf 13503 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ* → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36135, 360syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵)))
36272, 79, 361mpbir2and 712 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞))
363362snssd 4834 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞))
364 sseqin2 4244 . . . . . . . . . . . 12 ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
365363, 364sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵})
366359, 365uneq12d 4192 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
367343, 366eqtrid 2792 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
368 retop 24803 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
369 reex 11275 . . . . . . . . . . . 12 ℝ ∈ V
370369ssex 5339 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
371337, 370syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V)
372 iooretop 24807 . . . . . . . . . . 11 (𝑎(,)+∞) ∈ (topGen‘ran (,))
373372a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran (,)))
374 elrestr 17488 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
375368, 371, 373, 374mp3an2i 1466 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
376367, 375eqeltrrd 2845 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
377 eqid 2740 . . . . . . . . . 10 (topGen‘ran (,)) = (topGen‘ran (,))
37899, 377rerest 24845 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
379337, 378syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,)) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
380376, 379eleqtrrd 2847 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))
381 isopn3i 23111 . . . . . . 7 ((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
382342, 380, 381syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵}))
383333, 382eleqtrrd 2847 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})))
384325, 39, 328, 99, 329, 383limcres 25941 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) ↾ (𝑎(,)𝐵)) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
385309, 311, 3843eqtr2d 2786 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) lim 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
386302, 385eleqtrd 2846 . 2 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
3879, 386rexlimddv 3167 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  cq 13013  (,)cioo 13407  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Topctop 22920  TopOnctopon 22937  intcnt 23046  cnccncf 24921   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  lhop  26075  fourierdlem60  46087
  Copyright terms: Public domain W3C validator