MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodntriv Structured version   Visualization version   GIF version

Theorem fprodntriv 14958
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1 𝑍 = (ℤ𝑀)
fprodntriv.2 (𝜑𝑁𝑍)
fprodntriv.3 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodntriv (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝑛,𝑦   𝑛,𝑁   𝜑,𝑛   𝑦,𝑛,𝑁   𝑘,𝑍,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑘)   𝑀(𝑦,𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem fprodntriv
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5 (𝜑𝑁𝑍)
2 fprodntriv.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2854 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 peano2uz 11944 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
65, 2syl6eleqr 2855 . 2 (𝜑 → (𝑁 + 1) ∈ 𝑍)
7 ax-1ne0 10260 . . 3 1 ≠ 0
8 eqid 2765 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
9 eluzelz 11899 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109, 2eleq2s 2862 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
111, 10syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
1211peano2zd 11735 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℤ)
13 seqex 13013 . . . . 5 seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V
1413a1i 11 . . . 4 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V)
15 1cnd 10290 . . . 4 (𝜑 → 1 ∈ ℂ)
16 simpr 477 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
17 fprodntriv.3 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝑀...𝑁))
1817ad2antrr 717 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁))
1911ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ)
2019zred 11732 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ)
2119peano2zd 11735 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ)
2221zred 11732 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ)
23 elfzelz 12552 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ)
2423adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ)
2524zred 11732 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ)
2620ltp1d 11210 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1))
27 elfzle1 12554 . . . . . . . . . . . . . . 15 (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚)
2827adantl 473 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚)
2920, 22, 25, 26, 28ltletrd 10453 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚)
3020, 25ltnled 10440 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3129, 30mpbid 223 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝑁)
3231intnand 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀𝑚𝑚𝑁))
3332intnand 482 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
34 elfz2 12543 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
3533, 34sylnibr 320 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁))
3618, 35ssneldd 3766 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝐴)
3736iffalsed 4256 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
38 fzssuz 12592 . . . . . . . . . 10 ((𝑁 + 1)...𝑛) ⊆ (ℤ‘(𝑁 + 1))
395adantr 472 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ (ℤ𝑀))
40 uzss 11910 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4139, 40syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4241, 2syl6sseqr 3814 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
4338, 42syl5ss 3774 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1)...𝑛) ⊆ 𝑍)
4443sselda 3763 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚𝑍)
45 ax-1cn 10249 . . . . . . . . 9 1 ∈ ℂ
4637, 45syl6eqel 2852 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
47 nfcv 2907 . . . . . . . . 9 𝑘𝑚
48 nfv 2009 . . . . . . . . . 10 𝑘 𝑚𝐴
49 nfcsb1v 3709 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
50 nfcv 2907 . . . . . . . . . 10 𝑘1
5148, 49, 50nfif 4274 . . . . . . . . 9 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
52 eleq1w 2827 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
53 csbeq1a 3702 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
5452, 53ifbieq1d 4268 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
55 eqid 2765 . . . . . . . . 9 (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))
5647, 51, 54, 55fvmptf 6492 . . . . . . . 8 ((𝑚𝑍 ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
5744, 46, 56syl2anc 579 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
58 elfzuz 12548 . . . . . . . . 9 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
5958adantl 473 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
60 1ex 10291 . . . . . . . . 9 1 ∈ V
6160fvconst2 6664 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6259, 61syl 17 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6337, 57, 623eqtr4d 2809 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = (((ℤ‘(𝑁 + 1)) × {1})‘𝑚))
6416, 63seqfveq 13035 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛))
658prodf1 14909 . . . . . 6 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6665adantl 473 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6764, 66eqtrd 2799 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = 1)
688, 12, 14, 15, 67climconst 14562 . . 3 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)
69 neeq1 2999 . . . . 5 (𝑦 = 1 → (𝑦 ≠ 0 ↔ 1 ≠ 0))
70 breq2 4815 . . . . 5 (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1))
7169, 70anbi12d 624 . . . 4 (𝑦 = 1 → ((𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)))
7260, 71spcev 3453 . . 3 ((1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
737, 68, 72sylancr 581 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
74 seqeq1 13014 . . . . . 6 (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))))
7574breq1d 4821 . . . . 5 (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
7675anbi2d 622 . . . 4 (𝑛 = (𝑁 + 1) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7776exbidv 2016 . . 3 (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7877rspcev 3462 . 2 (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
796, 73, 78syl2anc 579 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  Vcvv 3350  csb 3693  wss 3734  ifcif 4245  {csn 4336   class class class wbr 4811  cmpt 4890   × cxp 5277  cfv 6070  (class class class)co 6844  cc 10189  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196   < clt 10330  cle 10331  cz 11626  cuz 11889  ...cfz 12536  seqcseq 13011  cli 14503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-fz 12537  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507
This theorem is referenced by:  fprodss  14964
  Copyright terms: Public domain W3C validator