MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodntriv Structured version   Visualization version   GIF version

Theorem fprodntriv 15825
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1 𝑍 = (ℤ𝑀)
fprodntriv.2 (𝜑𝑁𝑍)
fprodntriv.3 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodntriv (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝑛,𝑦   𝑛,𝑁   𝜑,𝑛   𝑦,𝑛,𝑁   𝑘,𝑍,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑘)   𝑀(𝑦,𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem fprodntriv
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5 (𝜑𝑁𝑍)
2 fprodntriv.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2848 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 peano2uz 12826 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
65, 2eleqtrrdi 2849 . 2 (𝜑 → (𝑁 + 1) ∈ 𝑍)
7 ax-1ne0 11120 . . 3 1 ≠ 0
8 eqid 2736 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
9 eluzelz 12773 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109, 2eleq2s 2856 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
111, 10syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
1211peano2zd 12610 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℤ)
13 seqex 13908 . . . . 5 seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V
1413a1i 11 . . . 4 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V)
15 1cnd 11150 . . . 4 (𝜑 → 1 ∈ ℂ)
16 simpr 485 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
17 fprodntriv.3 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝑀...𝑁))
1817ad2antrr 724 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁))
1911ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ)
2019zred 12607 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ)
2119peano2zd 12610 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ)
2221zred 12607 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ)
23 elfzelz 13441 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ)
2423adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ)
2524zred 12607 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ)
2620ltp1d 12085 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1))
27 elfzle1 13444 . . . . . . . . . . . . . . 15 (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚)
2827adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚)
2920, 22, 25, 26, 28ltletrd 11315 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚)
3020, 25ltnled 11302 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3129, 30mpbid 231 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝑁)
3231intnand 489 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀𝑚𝑚𝑁))
3332intnand 489 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
34 elfz2 13431 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
3533, 34sylnibr 328 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁))
3618, 35ssneldd 3947 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝐴)
3736iffalsed 4497 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
38 fzssuz 13482 . . . . . . . . . 10 ((𝑁 + 1)...𝑛) ⊆ (ℤ‘(𝑁 + 1))
395adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ (ℤ𝑀))
40 uzss 12786 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4139, 40syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4241, 2sseqtrrdi 3995 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
4338, 42sstrid 3955 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1)...𝑛) ⊆ 𝑍)
4443sselda 3944 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚𝑍)
45 ax-1cn 11109 . . . . . . . . 9 1 ∈ ℂ
4637, 45eqeltrdi 2846 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
47 nfcv 2907 . . . . . . . . 9 𝑘𝑚
48 nfv 1917 . . . . . . . . . 10 𝑘 𝑚𝐴
49 nfcsb1v 3880 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
50 nfcv 2907 . . . . . . . . . 10 𝑘1
5148, 49, 50nfif 4516 . . . . . . . . 9 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
52 eleq1w 2820 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
53 csbeq1a 3869 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
5452, 53ifbieq1d 4510 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
55 eqid 2736 . . . . . . . . 9 (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))
5647, 51, 54, 55fvmptf 6969 . . . . . . . 8 ((𝑚𝑍 ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
5744, 46, 56syl2anc 584 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
58 elfzuz 13437 . . . . . . . . 9 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
5958adantl 482 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
60 1ex 11151 . . . . . . . . 9 1 ∈ V
6160fvconst2 7153 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6259, 61syl 17 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6337, 57, 623eqtr4d 2786 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = (((ℤ‘(𝑁 + 1)) × {1})‘𝑚))
6416, 63seqfveq 13932 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛))
658prodf1 15776 . . . . . 6 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6665adantl 482 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6764, 66eqtrd 2776 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = 1)
688, 12, 14, 15, 67climconst 15425 . . 3 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)
69 neeq1 3006 . . . . 5 (𝑦 = 1 → (𝑦 ≠ 0 ↔ 1 ≠ 0))
70 breq2 5109 . . . . 5 (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1))
7169, 70anbi12d 631 . . . 4 (𝑦 = 1 → ((𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)))
7260, 71spcev 3565 . . 3 ((1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
737, 68, 72sylancr 587 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
74 seqeq1 13909 . . . . . 6 (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))))
7574breq1d 5115 . . . . 5 (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
7675anbi2d 629 . . . 4 (𝑛 = (𝑁 + 1) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7776exbidv 1924 . . 3 (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7877rspcev 3581 . 2 (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
796, 73, 78syl2anc 584 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  csb 3855  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370
This theorem is referenced by:  fprodss  15831
  Copyright terms: Public domain W3C validator