MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodntriv Structured version   Visualization version   GIF version

Theorem fprodntriv 15288
Description: A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodntriv.1 𝑍 = (ℤ𝑀)
fprodntriv.2 (𝜑𝑁𝑍)
fprodntriv.3 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fprodntriv (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝑛,𝑦   𝑛,𝑁   𝜑,𝑛   𝑦,𝑛,𝑁   𝑘,𝑍,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐵(𝑘)   𝑀(𝑦,𝑘,𝑛)   𝑁(𝑘)

Proof of Theorem fprodntriv
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fprodntriv.2 . . . . 5 (𝜑𝑁𝑍)
2 fprodntriv.1 . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2900 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 peano2uz 12289 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
65, 2eleqtrrdi 2901 . 2 (𝜑 → (𝑁 + 1) ∈ 𝑍)
7 ax-1ne0 10595 . . 3 1 ≠ 0
8 eqid 2798 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
9 eluzelz 12241 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109, 2eleq2s 2908 . . . . . 6 (𝑁𝑍𝑁 ∈ ℤ)
111, 10syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
1211peano2zd 12078 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℤ)
13 seqex 13366 . . . . 5 seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V
1413a1i 11 . . . 4 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ∈ V)
15 1cnd 10625 . . . 4 (𝜑 → 1 ∈ ℂ)
16 simpr 488 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
17 fprodntriv.3 . . . . . . . . . 10 (𝜑𝐴 ⊆ (𝑀...𝑁))
1817ad2antrr 725 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝐴 ⊆ (𝑀...𝑁))
1911ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℤ)
2019zred 12075 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 ∈ ℝ)
2119peano2zd 12078 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℤ)
2221zred 12075 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ∈ ℝ)
23 elfzelz 12902 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ ℤ)
2423adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℤ)
2524zred 12075 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ ℝ)
2620ltp1d 11559 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < (𝑁 + 1))
27 elfzle1 12905 . . . . . . . . . . . . . . 15 (𝑚 ∈ ((𝑁 + 1)...𝑛) → (𝑁 + 1) ≤ 𝑚)
2827adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 + 1) ≤ 𝑚)
2920, 22, 25, 26, 28ltletrd 10789 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑁 < 𝑚)
3020, 25ltnled 10776 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝑁 < 𝑚 ↔ ¬ 𝑚𝑁))
3129, 30mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝑁)
3231intnand 492 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ (𝑀𝑚𝑚𝑁))
3332intnand 492 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
34 elfz2 12892 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (𝑀𝑚𝑚𝑁)))
3533, 34sylnibr 332 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚 ∈ (𝑀...𝑁))
3618, 35ssneldd 3918 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ¬ 𝑚𝐴)
3736iffalsed 4436 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
38 fzssuz 12943 . . . . . . . . . 10 ((𝑁 + 1)...𝑛) ⊆ (ℤ‘(𝑁 + 1))
395adantr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ (ℤ𝑀))
40 uzss 12253 . . . . . . . . . . . 12 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4139, 40syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
4241, 2sseqtrrdi 3966 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
4338, 42sstrid 3926 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 + 1)...𝑛) ⊆ 𝑍)
4443sselda 3915 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚𝑍)
45 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
4637, 45eqeltrdi 2898 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
47 nfcv 2955 . . . . . . . . 9 𝑘𝑚
48 nfv 1915 . . . . . . . . . 10 𝑘 𝑚𝐴
49 nfcsb1v 3852 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
50 nfcv 2955 . . . . . . . . . 10 𝑘1
5148, 49, 50nfif 4454 . . . . . . . . 9 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
52 eleq1w 2872 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
53 csbeq1a 3842 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
5452, 53ifbieq1d 4448 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
55 eqid 2798 . . . . . . . . 9 (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))
5647, 51, 54, 55fvmptf 6766 . . . . . . . 8 ((𝑚𝑍 ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
5744, 46, 56syl2anc 587 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
58 elfzuz 12898 . . . . . . . . 9 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
5958adantl 485 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
60 1ex 10626 . . . . . . . . 9 1 ∈ V
6160fvconst2 6943 . . . . . . . 8 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6259, 61syl 17 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (((ℤ‘(𝑁 + 1)) × {1})‘𝑚) = 1)
6337, 57, 623eqtr4d 2843 . . . . . 6 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → ((𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))‘𝑚) = (((ℤ‘(𝑁 + 1)) × {1})‘𝑚))
6416, 63seqfveq 13390 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛))
658prodf1 15239 . . . . . 6 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6665adantl 485 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , ((ℤ‘(𝑁 + 1)) × {1}))‘𝑛) = 1)
6764, 66eqtrd 2833 . . . 4 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1)))‘𝑛) = 1)
688, 12, 14, 15, 67climconst 14892 . . 3 (𝜑 → seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)
69 neeq1 3049 . . . . 5 (𝑦 = 1 → (𝑦 ≠ 0 ↔ 1 ≠ 0))
70 breq2 5034 . . . . 5 (𝑦 = 1 → (seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1))
7169, 70anbi12d 633 . . . 4 (𝑦 = 1 → ((𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1)))
7260, 71spcev 3555 . . 3 ((1 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 1) → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
737, 68, 72sylancr 590 . 2 (𝜑 → ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
74 seqeq1 13367 . . . . . 6 (𝑛 = (𝑁 + 1) → seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) = seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))))
7574breq1d 5040 . . . . 5 (𝑛 = (𝑁 + 1) → (seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
7675anbi2d 631 . . . 4 (𝑛 = (𝑁 + 1) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7776exbidv 1922 . . 3 (𝑛 = (𝑁 + 1) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
7877rspcev 3571 . 2 (((𝑁 + 1) ∈ 𝑍 ∧ ∃𝑦(𝑦 ≠ 0 ∧ seq(𝑁 + 1)( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
796, 73, 78syl2anc 587 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  csb 3828  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by:  fprodss  15294
  Copyright terms: Public domain W3C validator