Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval3lemN Structured version   Visualization version   GIF version

Theorem hdmapval3lemN 39463
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapval3.h 𝐻 = (LHyp‘𝐾)
hdmapval3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapval3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapval3.v 𝑉 = (Base‘𝑈)
hdmapval3.n 𝑁 = (LSpan‘𝑈)
hdmapval3.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapval3.d 𝐷 = (Base‘𝐶)
hdmapval3.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapval3.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapval3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapval3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapval3.te (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
hdmapval3lem.t (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
hdmapval3lem.x (𝜑𝑥𝑉)
hdmapval3lem.xn (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
Assertion
Ref Expression
hdmapval3lemN (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))

Proof of Theorem hdmapval3lemN
StepHypRef Expression
1 hdmapval3.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapval3.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapval3.v . . 3 𝑉 = (Base‘𝑈)
4 eqid 2738 . . 3 (0g𝑈) = (0g𝑈)
5 hdmapval3.n . . 3 𝑁 = (LSpan‘𝑈)
6 hdmapval3.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapval3.d . . 3 𝐷 = (Base‘𝐶)
8 eqid 2738 . . 3 (LSpan‘𝐶) = (LSpan‘𝐶)
9 eqid 2738 . . 3 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
10 hdmapval3.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
11 hdmapval3.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 eqid 2738 . . . . . 6 (0g𝐶) = (0g𝐶)
13 hdmapval3.j . . . . . 6 𝐽 = ((HVMap‘𝐾)‘𝑊)
14 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2738 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
16 hdmapval3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
171, 14, 15, 2, 3, 4, 16, 11dvheveccl 38738 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
181, 2, 3, 4, 6, 7, 12, 13, 11, 17hvmapcl2 39392 . . . . 5 (𝜑 → (𝐽𝐸) ∈ (𝐷 ∖ {(0g𝐶)}))
1918eldifad 3853 . . . 4 (𝜑 → (𝐽𝐸) ∈ 𝐷)
201, 2, 3, 4, 5, 6, 8, 9, 13, 11, 17mapdhvmap 39395 . . . 4 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝐸})) = ((LSpan‘𝐶)‘{(𝐽𝐸)}))
211, 2, 11dvhlvec 38735 . . . . . . 7 (𝜑𝑈 ∈ LVec)
22 hdmapval3lem.x . . . . . . 7 (𝜑𝑥𝑉)
2317eldifad 3853 . . . . . . 7 (𝜑𝐸𝑉)
24 hdmapval3lem.t . . . . . . . 8 (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
2524eldifad 3853 . . . . . . 7 (𝜑𝑇𝑉)
26 hdmapval3lem.xn . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
273, 5, 21, 22, 23, 25, 26lspindpi 20016 . . . . . 6 (𝜑 → ((𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}) ∧ (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇})))
2827simpld 498 . . . . 5 (𝜑 → (𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}))
2928necomd 2989 . . . 4 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑥}))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 29, 17, 22hdmap1cl 39430 . . 3 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ∈ 𝐷)
31 eqidd 2739 . . . . 5 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))
32 eqid 2738 . . . . . 6 (-g𝑈) = (-g𝑈)
33 eqid 2738 . . . . . 6 (-g𝐶) = (-g𝐶)
34 eqid 2738 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 11dvhlmod 38736 . . . . . . 7 (𝜑𝑈 ∈ LMod)
363, 34, 5, 35, 23, 25lspprcl 19862 . . . . . . 7 (𝜑 → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈))
374, 34, 35, 36, 22, 26lssneln0 19836 . . . . . 6 (𝜑𝑥 ∈ (𝑉 ∖ {(0g𝑈)}))
381, 2, 3, 32, 4, 5, 6, 7, 33, 8, 9, 10, 11, 17, 19, 37, 30, 29, 20hdmap1eq 39427 . . . . 5 (𝜑 → ((𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ↔ ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))}))))
3931, 38mpbid 235 . . . 4 (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))})))
4039simpld 498 . . 3 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}))
41 hdmapval3.te . . . 4 (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
4241necomd 2989 . . 3 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑇}))
43 hdmapval3.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
443, 5, 35, 23, 25lspprid1 19881 . . . . . . . 8 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑇}))
4534, 5, 35, 36, 44lspsnel5a 19880 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑇}))
4645, 45unssd 4074 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})) ⊆ (𝑁‘{𝐸, 𝑇}))
4746, 26ssneldd 3878 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})))
481, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 23, 22, 47hdmapval2 39458 . . . 4 (𝜑 → (𝑆𝐸) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩))
491, 16, 13, 43, 11hdmapevec 39461 . . . 4 (𝜑 → (𝑆𝐸) = (𝐽𝐸))
5048, 49eqtr3d 2775 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩) = (𝐽𝐸))
513, 5, 35, 23, 25lspprid2 19882 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝐸, 𝑇}))
5234, 5, 35, 36, 51lspsnel5a 19880 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝐸, 𝑇}))
5345, 52unssd 4074 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝐸, 𝑇}))
5453, 26ssneldd 3878 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))
551, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 25, 22, 54hdmapval2 39458 . . . 4 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩))
5655eqcomd 2744 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩) = (𝑆𝑇))
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 30, 40, 37, 17, 24, 42, 26, 50, 56hdmap1eq4N 39432 . 2 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩) = (𝑆𝑇))
5857eqcomd 2744 1 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113  wne 2934  cdif 3838  cun 3839  {csn 4513  {cpr 4515  cop 4519  cotp 4521   I cid 5424  cres 5521  cfv 6333  (class class class)co 7164  Basecbs 16579  0gc0g 16809  -gcsg 18214  LSubSpclss 19815  LSpanclspn 19855  HLchlt 36976  LHypclh 37610  LTrncltrn 37727  DVecHcdvh 38704  LCDualclcd 39212  mapdcmpd 39250  HVMapchvm 39382  HDMap1chdma1 39417  HDMapchdma 39418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-riotaBAD 36579
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-ot 4522  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-tpos 7914  df-undef 7961  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-n0 11970  df-z 12056  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-0g 16811  df-mre 16953  df-mrc 16954  df-acs 16956  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-p1 17759  df-lat 17765  df-clat 17827  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-grp 18215  df-minusg 18216  df-sbg 18217  df-subg 18387  df-cntz 18558  df-oppg 18585  df-lsm 18872  df-cmn 19019  df-abl 19020  df-mgp 19352  df-ur 19364  df-ring 19411  df-oppr 19488  df-dvdsr 19506  df-unit 19507  df-invr 19537  df-dvr 19548  df-drng 19616  df-lmod 19748  df-lss 19816  df-lsp 19856  df-lvec 19987  df-lsatoms 36602  df-lshyp 36603  df-lcv 36645  df-lfl 36684  df-lkr 36712  df-ldual 36750  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124  df-lplanes 37125  df-lvols 37126  df-lines 37127  df-psubsp 37129  df-pmap 37130  df-padd 37422  df-lhyp 37614  df-laut 37615  df-ldil 37730  df-ltrn 37731  df-trl 37785  df-tgrp 38369  df-tendo 38381  df-edring 38383  df-dveca 38629  df-disoa 38655  df-dvech 38705  df-dib 38765  df-dic 38799  df-dih 38855  df-doch 38974  df-djh 39021  df-lcdual 39213  df-mapd 39251  df-hvmap 39383  df-hdmap1 39419  df-hdmap 39420
This theorem is referenced by:  hdmapval3N  39464
  Copyright terms: Public domain W3C validator