Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval3lemN Structured version   Visualization version   GIF version

Theorem hdmapval3lemN 41882
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapval3.h 𝐻 = (LHyp‘𝐾)
hdmapval3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapval3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapval3.v 𝑉 = (Base‘𝑈)
hdmapval3.n 𝑁 = (LSpan‘𝑈)
hdmapval3.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapval3.d 𝐷 = (Base‘𝐶)
hdmapval3.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapval3.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapval3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapval3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapval3.te (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
hdmapval3lem.t (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
hdmapval3lem.x (𝜑𝑥𝑉)
hdmapval3lem.xn (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
Assertion
Ref Expression
hdmapval3lemN (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))

Proof of Theorem hdmapval3lemN
StepHypRef Expression
1 hdmapval3.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapval3.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapval3.v . . 3 𝑉 = (Base‘𝑈)
4 eqid 2731 . . 3 (0g𝑈) = (0g𝑈)
5 hdmapval3.n . . 3 𝑁 = (LSpan‘𝑈)
6 hdmapval3.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapval3.d . . 3 𝐷 = (Base‘𝐶)
8 eqid 2731 . . 3 (LSpan‘𝐶) = (LSpan‘𝐶)
9 eqid 2731 . . 3 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
10 hdmapval3.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
11 hdmapval3.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 eqid 2731 . . . . . 6 (0g𝐶) = (0g𝐶)
13 hdmapval3.j . . . . . 6 𝐽 = ((HVMap‘𝐾)‘𝑊)
14 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2731 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
16 hdmapval3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
171, 14, 15, 2, 3, 4, 16, 11dvheveccl 41157 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
181, 2, 3, 4, 6, 7, 12, 13, 11, 17hvmapcl2 41811 . . . . 5 (𝜑 → (𝐽𝐸) ∈ (𝐷 ∖ {(0g𝐶)}))
1918eldifad 3914 . . . 4 (𝜑 → (𝐽𝐸) ∈ 𝐷)
201, 2, 3, 4, 5, 6, 8, 9, 13, 11, 17mapdhvmap 41814 . . . 4 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝐸})) = ((LSpan‘𝐶)‘{(𝐽𝐸)}))
211, 2, 11dvhlvec 41154 . . . . . . 7 (𝜑𝑈 ∈ LVec)
22 hdmapval3lem.x . . . . . . 7 (𝜑𝑥𝑉)
2317eldifad 3914 . . . . . . 7 (𝜑𝐸𝑉)
24 hdmapval3lem.t . . . . . . . 8 (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
2524eldifad 3914 . . . . . . 7 (𝜑𝑇𝑉)
26 hdmapval3lem.xn . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
273, 5, 21, 22, 23, 25, 26lspindpi 21070 . . . . . 6 (𝜑 → ((𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}) ∧ (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇})))
2827simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}))
2928necomd 2983 . . . 4 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑥}))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 29, 17, 22hdmap1cl 41849 . . 3 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ∈ 𝐷)
31 eqidd 2732 . . . . 5 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))
32 eqid 2731 . . . . . 6 (-g𝑈) = (-g𝑈)
33 eqid 2731 . . . . . 6 (-g𝐶) = (-g𝐶)
34 eqid 2731 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 11dvhlmod 41155 . . . . . . 7 (𝜑𝑈 ∈ LMod)
363, 34, 5, 35, 23, 25lspprcl 20912 . . . . . . 7 (𝜑 → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈))
374, 34, 35, 36, 22, 26lssneln0 20887 . . . . . 6 (𝜑𝑥 ∈ (𝑉 ∖ {(0g𝑈)}))
381, 2, 3, 32, 4, 5, 6, 7, 33, 8, 9, 10, 11, 17, 19, 37, 30, 29, 20hdmap1eq 41846 . . . . 5 (𝜑 → ((𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ↔ ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))}))))
3931, 38mpbid 232 . . . 4 (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))})))
4039simpld 494 . . 3 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}))
41 hdmapval3.te . . . 4 (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
4241necomd 2983 . . 3 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑇}))
43 hdmapval3.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
443, 5, 35, 23, 25lspprid1 20931 . . . . . . . 8 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑇}))
4534, 5, 35, 36, 44ellspsn5 20930 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑇}))
4645, 45unssd 4142 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})) ⊆ (𝑁‘{𝐸, 𝑇}))
4746, 26ssneldd 3937 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})))
481, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 23, 22, 47hdmapval2 41877 . . . 4 (𝜑 → (𝑆𝐸) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩))
491, 16, 13, 43, 11hdmapevec 41880 . . . 4 (𝜑 → (𝑆𝐸) = (𝐽𝐸))
5048, 49eqtr3d 2768 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩) = (𝐽𝐸))
513, 5, 35, 23, 25lspprid2 20932 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝐸, 𝑇}))
5234, 5, 35, 36, 51ellspsn5 20930 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝐸, 𝑇}))
5345, 52unssd 4142 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝐸, 𝑇}))
5453, 26ssneldd 3937 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))
551, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 25, 22, 54hdmapval2 41877 . . . 4 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩))
5655eqcomd 2737 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩) = (𝑆𝑇))
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 30, 40, 37, 17, 24, 42, 26, 50, 56hdmap1eq4N 41851 . 2 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩) = (𝑆𝑇))
5857eqcomd 2737 1 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  cun 3900  {csn 4576  {cpr 4578  cop 4582  cotp 4584   I cid 5510  cres 5618  cfv 6481  (class class class)co 7346  Basecbs 17120  0gc0g 17343  -gcsg 18848  LSubSpclss 20865  LSpanclspn 20905  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669  HVMapchvm 41801  HDMap1chdma1 41836  HDMapchdma 41837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670  df-hvmap 41802  df-hdmap1 41838  df-hdmap 41839
This theorem is referenced by:  hdmapval3N  41883
  Copyright terms: Public domain W3C validator