Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval3lemN Structured version   Visualization version   GIF version

Theorem hdmapval3lemN 39778
Description: Value of map from vectors to functionals at arguments not colinear with the reference vector 𝐸. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmapval3.h 𝐻 = (LHyp‘𝐾)
hdmapval3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapval3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapval3.v 𝑉 = (Base‘𝑈)
hdmapval3.n 𝑁 = (LSpan‘𝑈)
hdmapval3.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmapval3.d 𝐷 = (Base‘𝐶)
hdmapval3.j 𝐽 = ((HVMap‘𝐾)‘𝑊)
hdmapval3.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmapval3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapval3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapval3.te (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
hdmapval3lem.t (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
hdmapval3lem.x (𝜑𝑥𝑉)
hdmapval3lem.xn (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
Assertion
Ref Expression
hdmapval3lemN (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))

Proof of Theorem hdmapval3lemN
StepHypRef Expression
1 hdmapval3.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapval3.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapval3.v . . 3 𝑉 = (Base‘𝑈)
4 eqid 2738 . . 3 (0g𝑈) = (0g𝑈)
5 hdmapval3.n . . 3 𝑁 = (LSpan‘𝑈)
6 hdmapval3.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 hdmapval3.d . . 3 𝐷 = (Base‘𝐶)
8 eqid 2738 . . 3 (LSpan‘𝐶) = (LSpan‘𝐶)
9 eqid 2738 . . 3 ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊)
10 hdmapval3.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
11 hdmapval3.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 eqid 2738 . . . . . 6 (0g𝐶) = (0g𝐶)
13 hdmapval3.j . . . . . 6 𝐽 = ((HVMap‘𝐾)‘𝑊)
14 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
15 eqid 2738 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
16 hdmapval3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
171, 14, 15, 2, 3, 4, 16, 11dvheveccl 39053 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
181, 2, 3, 4, 6, 7, 12, 13, 11, 17hvmapcl2 39707 . . . . 5 (𝜑 → (𝐽𝐸) ∈ (𝐷 ∖ {(0g𝐶)}))
1918eldifad 3895 . . . 4 (𝜑 → (𝐽𝐸) ∈ 𝐷)
201, 2, 3, 4, 5, 6, 8, 9, 13, 11, 17mapdhvmap 39710 . . . 4 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝐸})) = ((LSpan‘𝐶)‘{(𝐽𝐸)}))
211, 2, 11dvhlvec 39050 . . . . . . 7 (𝜑𝑈 ∈ LVec)
22 hdmapval3lem.x . . . . . . 7 (𝜑𝑥𝑉)
2317eldifad 3895 . . . . . . 7 (𝜑𝐸𝑉)
24 hdmapval3lem.t . . . . . . . 8 (𝜑𝑇 ∈ (𝑉 ∖ {(0g𝑈)}))
2524eldifad 3895 . . . . . . 7 (𝜑𝑇𝑉)
26 hdmapval3lem.xn . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑁‘{𝐸, 𝑇}))
273, 5, 21, 22, 23, 25, 26lspindpi 20309 . . . . . 6 (𝜑 → ((𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}) ∧ (𝑁‘{𝑥}) ≠ (𝑁‘{𝑇})))
2827simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑥}) ≠ (𝑁‘{𝐸}))
2928necomd 2998 . . . 4 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑥}))
301, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 29, 17, 22hdmap1cl 39745 . . 3 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ∈ 𝐷)
31 eqidd 2739 . . . . 5 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))
32 eqid 2738 . . . . . 6 (-g𝑈) = (-g𝑈)
33 eqid 2738 . . . . . 6 (-g𝐶) = (-g𝐶)
34 eqid 2738 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 11dvhlmod 39051 . . . . . . 7 (𝜑𝑈 ∈ LMod)
363, 34, 5, 35, 23, 25lspprcl 20155 . . . . . . 7 (𝜑 → (𝑁‘{𝐸, 𝑇}) ∈ (LSubSp‘𝑈))
374, 34, 35, 36, 22, 26lssneln0 20129 . . . . . 6 (𝜑𝑥 ∈ (𝑉 ∖ {(0g𝑈)}))
381, 2, 3, 32, 4, 5, 6, 7, 33, 8, 9, 10, 11, 17, 19, 37, 30, 29, 20hdmap1eq 39742 . . . . 5 (𝜑 → ((𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩) ↔ ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))}))))
3931, 38mpbid 231 . . . 4 (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}) ∧ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{(𝐸(-g𝑈)𝑥)})) = ((LSpan‘𝐶)‘{((𝐽𝐸)(-g𝐶)(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩))})))
4039simpld 494 . . 3 (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑥})) = ((LSpan‘𝐶)‘{(𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩)}))
41 hdmapval3.te . . . 4 (𝜑 → (𝑁‘{𝑇}) ≠ (𝑁‘{𝐸}))
4241necomd 2998 . . 3 (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑇}))
43 hdmapval3.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
443, 5, 35, 23, 25lspprid1 20174 . . . . . . . 8 (𝜑𝐸 ∈ (𝑁‘{𝐸, 𝑇}))
4534, 5, 35, 36, 44lspsnel5a 20173 . . . . . . 7 (𝜑 → (𝑁‘{𝐸}) ⊆ (𝑁‘{𝐸, 𝑇}))
4645, 45unssd 4116 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})) ⊆ (𝑁‘{𝐸, 𝑇}))
4746, 26ssneldd 3920 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸})))
481, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 23, 22, 47hdmapval2 39773 . . . 4 (𝜑 → (𝑆𝐸) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩))
491, 16, 13, 43, 11hdmapevec 39776 . . . 4 (𝜑 → (𝑆𝐸) = (𝐽𝐸))
5048, 49eqtr3d 2780 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝐸⟩) = (𝐽𝐸))
513, 5, 35, 23, 25lspprid2 20175 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝐸, 𝑇}))
5234, 5, 35, 36, 51lspsnel5a 20173 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝐸, 𝑇}))
5345, 52unssd 4116 . . . . . 6 (𝜑 → ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝐸, 𝑇}))
5453, 26ssneldd 3920 . . . . 5 (𝜑 → ¬ 𝑥 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))
551, 16, 2, 3, 5, 6, 7, 13, 10, 43, 11, 25, 22, 54hdmapval2 39773 . . . 4 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩))
5655eqcomd 2744 . . 3 (𝜑 → (𝐼‘⟨𝑥, (𝐼‘⟨𝐸, (𝐽𝐸), 𝑥⟩), 𝑇⟩) = (𝑆𝑇))
571, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 30, 40, 37, 17, 24, 42, 26, 50, 56hdmap1eq4N 39747 . 2 (𝜑 → (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩) = (𝑆𝑇))
5857eqcomd 2744 1 (𝜑 → (𝑆𝑇) = (𝐼‘⟨𝐸, (𝐽𝐸), 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cun 3881  {csn 4558  {cpr 4560  cop 4564  cotp 4566   I cid 5479  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  -gcsg 18494  LSubSpclss 20108  LSpanclspn 20148  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  DVecHcdvh 39019  LCDualclcd 39527  mapdcmpd 39565  HVMapchvm 39697  HDMap1chdma1 39732  HDMapchdma 39733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-oppg 18865  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-lshyp 36918  df-lcv 36960  df-lfl 36999  df-lkr 37027  df-ldual 37065  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tgrp 38684  df-tendo 38696  df-edring 38698  df-dveca 38944  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170  df-doch 39289  df-djh 39336  df-lcdual 39528  df-mapd 39566  df-hvmap 39698  df-hdmap1 39734  df-hdmap 39735
This theorem is referenced by:  hdmapval3N  39779
  Copyright terms: Public domain W3C validator