| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap11lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmapadd 41890. (Contributed by NM, 26-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap11.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap11.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap11.p | ⊢ + = (+g‘𝑈) |
| hdmap11.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap11.a | ⊢ ✚ = (+g‘𝐶) |
| hdmap11.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap11.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap11.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmap11.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| hdmap11.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmap11.o | ⊢ 0 = (0g‘𝑈) |
| hdmap11.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap11.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap11.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap11.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap11.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
| hdmap11.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap11lem0.1a | ⊢ (𝜑 → 𝑧 ∈ 𝑉) |
| hdmap11lem0.6 | ⊢ (𝜑 → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) |
| hdmap11lem0.2a | ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) |
| Ref | Expression |
|---|---|
| hdmap11lem1 | ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap11.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap11.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap11.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap11.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 5 | hdmap11.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap11.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap11.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap11.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap11.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
| 10 | hdmap11.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 11 | hdmap11.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 12 | hdmap11.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 13 | hdmap11.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 15 | hdmap11.j | . . . . . 6 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
| 16 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 17 | eqid 2731 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 18 | hdmap11.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 19 | 1, 16, 17, 2, 3, 5, 18, 13 | dvheveccl 41159 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ { 0 })) |
| 20 | 1, 2, 3, 5, 7, 8, 14, 15, 13, 19 | hvmapcl2 41813 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
| 21 | 20 | eldifad 3909 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
| 22 | 1, 2, 3, 5, 6, 7, 10, 11, 15, 13, 19 | mapdhvmap 41816 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝐸})) = (𝐿‘{(𝐽‘𝐸)})) |
| 23 | hdmap11lem0.2a | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝐸})) | |
| 24 | 23 | necomd 2983 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑧})) |
| 25 | hdmap11lem0.1a | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝑉) | |
| 26 | 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 21, 22, 24, 19, 25 | hdmap1cl 41851 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) ∈ 𝐷) |
| 27 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 28 | 1, 2, 13 | dvhlmod 41157 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 29 | hdmap11.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 30 | hdmap11.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 31 | 3, 27, 6, 28, 29, 30 | lspprcl 20911 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 32 | hdmap11lem0.6 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 33 | 5, 27, 28, 31, 25, 32 | lssneln0 20886 | . . 3 ⊢ (𝜑 → 𝑧 ∈ (𝑉 ∖ { 0 })) |
| 34 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉)) | |
| 35 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 36 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
| 37 | 1, 2, 3, 35, 5, 6, 7, 8, 36, 10, 11, 12, 13, 19, 21, 33, 26, 24, 22 | hdmap1eq 41848 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑧)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉))})))) |
| 38 | 34, 37 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑧})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉)}) ∧ (𝑀‘(𝑁‘{(𝐸(-g‘𝑈)𝑧)})) = (𝐿‘{((𝐽‘𝐸)(-g‘𝐶)(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉))}))) |
| 39 | 38 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑧})) = (𝐿‘{(𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉)})) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 26, 33, 29, 30, 32, 39 | hdmap1l6 41868 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), (𝑋 + 𝑌)〉) = ((𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑋〉) ✚ (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑌〉))) |
| 41 | hdmap11.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 42 | 3, 4 | lmodvacl 20808 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 43 | 28, 29, 30, 42 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 44 | 1, 2, 13 | dvhlvec 41156 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 45 | 19 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 46 | 3, 4, 6, 28, 29, 30 | lspprvacl 20932 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) |
| 47 | 27, 6, 28, 31, 46 | ellspsn5 20929 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 48 | 47, 32 | ssneldd 3932 | . . . . 5 ⊢ (𝜑 → ¬ 𝑧 ∈ (𝑁‘{(𝑋 + 𝑌)})) |
| 49 | 3, 6, 28, 25, 43, 48 | lspsnne2 21055 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{(𝑋 + 𝑌)})) |
| 50 | 3, 6, 5, 44, 45, 43, 33, 23, 49 | hdmaplem4 41821 | . . 3 ⊢ (𝜑 → ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{(𝑋 + 𝑌)}))) |
| 51 | 1, 18, 2, 3, 6, 7, 8, 15, 12, 41, 13, 43, 25, 50 | hdmapval2 41879 | . 2 ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), (𝑋 + 𝑌)〉)) |
| 52 | 3, 6, 44, 25, 29, 30, 32 | lspindpi 21069 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑌}))) |
| 53 | 52 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
| 54 | 3, 6, 5, 44, 45, 29, 33, 23, 53 | hdmaplem4 41821 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑋}))) |
| 55 | 1, 18, 2, 3, 6, 7, 8, 15, 12, 41, 13, 29, 25, 54 | hdmapval2 41879 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑋〉)) |
| 56 | 52 | simprd 495 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑌})) |
| 57 | 3, 6, 5, 44, 45, 30, 33, 23, 56 | hdmaplem4 41821 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑌}))) |
| 58 | 1, 18, 2, 3, 6, 7, 8, 15, 12, 41, 13, 30, 25, 57 | hdmapval2 41879 | . . 3 ⊢ (𝜑 → (𝑆‘𝑌) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑌〉)) |
| 59 | 55, 58 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝑆‘𝑋) ✚ (𝑆‘𝑌)) = ((𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑋〉) ✚ (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑌〉))) |
| 60 | 40, 51, 59 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4573 {cpr 4575 〈cop 4579 〈cotp 4581 I cid 5508 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 -gcsg 18848 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 HLchlt 39397 LHypclh 40031 LTrncltrn 40148 DVecHcdvh 41125 LCDualclcd 41633 mapdcmpd 41671 HVMapchvm 41803 HDMap1chdma1 41838 HDMapchdma 41839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39000 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-oppg 19258 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39023 df-lshyp 39024 df-lcv 39066 df-lfl 39105 df-lkr 39133 df-ldual 39171 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-llines 39545 df-lplanes 39546 df-lvols 39547 df-lines 39548 df-psubsp 39550 df-pmap 39551 df-padd 39843 df-lhyp 40035 df-laut 40036 df-ldil 40151 df-ltrn 40152 df-trl 40206 df-tgrp 40790 df-tendo 40802 df-edring 40804 df-dveca 41050 df-disoa 41076 df-dvech 41126 df-dib 41186 df-dic 41220 df-dih 41276 df-doch 41395 df-djh 41442 df-lcdual 41634 df-mapd 41672 df-hvmap 41804 df-hdmap1 41840 df-hdmap 41841 |
| This theorem is referenced by: hdmap11lem2 41889 |
| Copyright terms: Public domain | W3C validator |