Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp3 Structured version   Visualization version   GIF version

Theorem mapdindp3 41724
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}))

Proof of Theorem mapdindp3
StepHypRef Expression
1 mapdindp1.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 21105 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
54eldifad 3963 . . . 4 (𝜑𝑤𝑉)
6 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
76eldifad 3963 . . . 4 (𝜑𝑌𝑉)
8 mapdindp1.v . . . . 5 𝑉 = (Base‘𝑊)
9 mapdindp1.p . . . . 5 + = (+g𝑊)
10 mapdindp1.n . . . . 5 𝑁 = (LSpan‘𝑊)
118, 9, 10lspvadd 21095 . . . 4 ((𝑊 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑁‘{(𝑤 + 𝑌)}) ⊆ (𝑁‘{𝑤, 𝑌}))
123, 5, 7, 11syl3anc 1373 . . 3 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ⊆ (𝑁‘{𝑤, 𝑌}))
13 mapdindp1.o . . . . 5 0 = (0g𝑊)
14 mapdindp1.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
15 mapdindp1.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
16 mapdindp1.f . . . . 5 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
178, 13, 10, 1, 14, 7, 5, 15, 16lspindp1 21135 . . . 4 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌})))
1817simprd 495 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑤, 𝑌}))
1912, 18ssneldd 3986 . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌)}))
2014eldifad 3963 . . . . 5 (𝜑𝑋𝑉)
218, 10lspsnid 20991 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
223, 20, 21syl2anc 584 . . . 4 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
23 eleq2 2830 . . . 4 ((𝑁‘{𝑋}) = (𝑁‘{(𝑤 + 𝑌)}) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌)})))
2422, 23syl5ibcom 245 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{(𝑤 + 𝑌)}) → 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌)})))
2524necon3bd 2954 . 2 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌)}) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)})))
2619, 25mpd 15 1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wne 2940  cdif 3948  wss 3951  {csn 4626  {cpr 4628  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  LModclmod 20858  LSpanclspn 20969  LVecclvec 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102
This theorem is referenced by:  mapdh6eN  41742  hdmap1l6e  41816
  Copyright terms: Public domain W3C validator