![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp3 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | β’ π = (Baseβπ) |
mapdindp1.p | β’ + = (+gβπ) |
mapdindp1.o | β’ 0 = (0gβπ) |
mapdindp1.n | β’ π = (LSpanβπ) |
mapdindp1.w | β’ (π β π β LVec) |
mapdindp1.x | β’ (π β π β (π β { 0 })) |
mapdindp1.y | β’ (π β π β (π β { 0 })) |
mapdindp1.z | β’ (π β π β (π β { 0 })) |
mapdindp1.W | β’ (π β π€ β (π β { 0 })) |
mapdindp1.e | β’ (π β (πβ{π}) = (πβ{π})) |
mapdindp1.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdindp1.f | β’ (π β Β¬ π€ β (πβ{π, π})) |
Ref | Expression |
---|---|
mapdindp3 | β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.w | . . . . 5 β’ (π β π β LVec) | |
2 | lveclmod 20951 | . . . . 5 β’ (π β LVec β π β LMod) | |
3 | 1, 2 | syl 17 | . . . 4 β’ (π β π β LMod) |
4 | mapdindp1.W | . . . . 5 β’ (π β π€ β (π β { 0 })) | |
5 | 4 | eldifad 3955 | . . . 4 β’ (π β π€ β π) |
6 | mapdindp1.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
7 | 6 | eldifad 3955 | . . . 4 β’ (π β π β π) |
8 | mapdindp1.v | . . . . 5 β’ π = (Baseβπ) | |
9 | mapdindp1.p | . . . . 5 β’ + = (+gβπ) | |
10 | mapdindp1.n | . . . . 5 β’ π = (LSpanβπ) | |
11 | 8, 9, 10 | lspvadd 20941 | . . . 4 β’ ((π β LMod β§ π€ β π β§ π β π) β (πβ{(π€ + π)}) β (πβ{π€, π})) |
12 | 3, 5, 7, 11 | syl3anc 1368 | . . 3 β’ (π β (πβ{(π€ + π)}) β (πβ{π€, π})) |
13 | mapdindp1.o | . . . . 5 β’ 0 = (0gβπ) | |
14 | mapdindp1.x | . . . . 5 β’ (π β π β (π β { 0 })) | |
15 | mapdindp1.ne | . . . . 5 β’ (π β (πβ{π}) β (πβ{π})) | |
16 | mapdindp1.f | . . . . 5 β’ (π β Β¬ π€ β (πβ{π, π})) | |
17 | 8, 13, 10, 1, 14, 7, 5, 15, 16 | lspindp1 20981 | . . . 4 β’ (π β ((πβ{π€}) β (πβ{π}) β§ Β¬ π β (πβ{π€, π}))) |
18 | 17 | simprd 495 | . . 3 β’ (π β Β¬ π β (πβ{π€, π})) |
19 | 12, 18 | ssneldd 3980 | . 2 β’ (π β Β¬ π β (πβ{(π€ + π)})) |
20 | 14 | eldifad 3955 | . . . . 5 β’ (π β π β π) |
21 | 8, 10 | lspsnid 20837 | . . . . 5 β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
22 | 3, 20, 21 | syl2anc 583 | . . . 4 β’ (π β π β (πβ{π})) |
23 | eleq2 2816 | . . . 4 β’ ((πβ{π}) = (πβ{(π€ + π)}) β (π β (πβ{π}) β π β (πβ{(π€ + π)}))) | |
24 | 22, 23 | syl5ibcom 244 | . . 3 β’ (π β ((πβ{π}) = (πβ{(π€ + π)}) β π β (πβ{(π€ + π)}))) |
25 | 24 | necon3bd 2948 | . 2 β’ (π β (Β¬ π β (πβ{(π€ + π)}) β (πβ{π}) β (πβ{(π€ + π)}))) |
26 | 19, 25 | mpd 15 | 1 β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 β wss 3943 {csn 4623 {cpr 4625 βcfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 0gc0g 17391 LModclmod 20703 LSpanclspn 20815 LVecclvec 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cntz 19230 df-lsm 19553 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-drng 20586 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lvec 20948 |
This theorem is referenced by: mapdh6eN 41123 hdmap1l6e 41197 |
Copyright terms: Public domain | W3C validator |