MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrblem Structured version   Visualization version   GIF version

Theorem sumrblem 15618
Description: Lemma for sumrb 15620. (Contributed by Mario Carneiro, 12-Aug-2013.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrblem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumrblem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 addlid 11299 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 481 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 11108 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 sumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 480 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 iftrue 4482 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
76adantl 481 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8 summo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
97, 8eqeltrd 2828 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
109ex 412 . . . . . . 7 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
11 iffalse 4485 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
12 0cn 11107 . . . . . . . 8 0 ∈ ℂ
1311, 12eqeltrdi 2836 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1410, 13pm2.61d1 180 . . . . . 6 (𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514adantr 480 . . . . 5 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
16 summo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
1715, 16fmptd 7048 . . . 4 (𝜑𝐹:ℤ⟶ℂ)
1817adantr 480 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝐹:ℤ⟶ℂ)
19 eluzelz 12745 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
204, 19syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
2120adantr 480 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
2218, 21ffvelcdmd 7019 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
23 elfzelz 13427 . . . . 5 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
2423adantl 481 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ)
25 simplr 768 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ𝑁))
2620zcnd 12581 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726ad2antrr 726 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ)
28 ax-1cn 11067 . . . . . . . 8 1 ∈ ℂ
29 npcan 11372 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
3027, 28, 29sylancl 586 . . . . . . 7 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3130fveq2d 6826 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
3225, 31sseqtrrd 3973 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ‘((𝑁 − 1) + 1)))
33 fznuz 13512 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3433adantl 481 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3532, 34ssneldd 3938 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
3624, 35eldifd 3914 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴))
37 fveqeq2 6831 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) = 0 ↔ (𝐹𝑛) = 0))
38 eldifi 4082 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
39 eldifn 4083 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
4039, 11syl 17 . . . . . . 7 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
4140, 12eqeltrdi 2836 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
4216fvmpt2 6941 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4338, 41, 42syl2anc 584 . . . . 5 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4443, 40eqtrd 2764 . . . 4 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 0)
4537, 44vtoclga 3532 . . 3 (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹𝑛) = 0)
4636, 45syl 17 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
472, 3, 5, 22, 46seqid 13954 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3900  wss 3903  ifcif 4476  cmpt 5173  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  cz 12471  cuz 12735  ...cfz 13410  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909
This theorem is referenced by:  sumrb  15620
  Copyright terms: Public domain W3C validator