| Step | Hyp | Ref
| Expression |
| 1 | | addlid 11444 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
| 2 | 1 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛) |
| 3 | | 0cnd 11254 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 0 ∈
ℂ) |
| 4 | | sumrb.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | 4 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | iftrue 4531 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 7 | 6 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 𝐵) |
| 8 | | summo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 9 | 7, 8 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 10 | 9 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ)) |
| 11 | | iffalse 4534 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
| 12 | | 0cn 11253 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 13 | 11, 12 | eqeltrdi 2849 |
. . . . . . 7
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 14 | 10, 13 | pm2.61d1 180 |
. . . . . 6
⊢ (𝜑 → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 15 | 14 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 16 | | summo.1 |
. . . . 5
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 17 | 15, 16 | fmptd 7134 |
. . . 4
⊢ (𝜑 → 𝐹:ℤ⟶ℂ) |
| 18 | 17 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝐹:ℤ⟶ℂ) |
| 19 | | eluzelz 12888 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 20 | 4, 19 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 21 | 20 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
| 22 | 18, 21 | ffvelcdmd 7105 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ∈ ℂ) |
| 23 | | elfzelz 13564 |
. . . . 5
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
| 24 | 23 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ) |
| 25 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ≥‘𝑁)) |
| 26 | 20 | zcnd 12723 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ) |
| 28 | | ax-1cn 11213 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 29 | | npcan 11517 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 30 | 27, 28, 29 | sylancl 586 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 31 | 30 | fveq2d 6910 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
| 32 | 25, 31 | sseqtrrd 4021 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆
(ℤ≥‘((𝑁 − 1) + 1))) |
| 33 | | fznuz 13649 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ≥‘((𝑁 − 1) +
1))) |
| 34 | 33 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
| 35 | 32, 34 | ssneldd 3986 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ 𝐴) |
| 36 | 24, 35 | eldifd 3962 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴)) |
| 37 | | fveqeq2 6915 |
. . . 4
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) = 0 ↔ (𝐹‘𝑛) = 0)) |
| 38 | | eldifi 4131 |
. . . . . 6
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ) |
| 39 | | eldifn 4132 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
| 40 | 39, 11 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) = 0) |
| 41 | 40, 12 | eqeltrdi 2849 |
. . . . . 6
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) |
| 42 | 16 | fvmpt2 7027 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℂ) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 43 | 38, 41, 42 | syl2anc 584 |
. . . . 5
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 44 | 43, 40 | eqtrd 2777 |
. . . 4
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = 0) |
| 45 | 37, 44 | vtoclga 3577 |
. . 3
⊢ (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑛) = 0) |
| 46 | 36, 45 | syl 17 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = 0) |
| 47 | 2, 3, 5, 22, 46 | seqid 14088 |
1
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |