MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem Structured version   Visualization version   GIF version

Theorem prodrblem 15639
Description: Lemma for prodrb 15642. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
prodrblem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)   𝑁(𝑘)

Proof of Theorem prodrblem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mulid2 10974 . . 3 (𝑛 ∈ ℂ → (1 · 𝑛) = 𝑛)
21adantl 482 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (1 · 𝑛) = 𝑛)
3 1cnd 10970 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 1 ∈ ℂ)
4 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 481 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 iftrue 4465 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
76adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8 prodmo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 712 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
107, 9eqeltrd 2839 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1110ex 413 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
12 iffalse 4468 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
13 ax-1cn 10929 . . . . . . 7 1 ∈ ℂ
1412, 13eqeltrdi 2847 . . . . . 6 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1511, 14pm2.61d1 180 . . . . 5 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
16 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1715, 16fmptd 6988 . . . 4 (𝜑𝐹:ℤ⟶ℂ)
18 uzssz 12603 . . . . 5 (ℤ𝑀) ⊆ ℤ
1918, 4sselid 3919 . . . 4 (𝜑𝑁 ∈ ℤ)
2017, 19ffvelrnd 6962 . . 3 (𝜑 → (𝐹𝑁) ∈ ℂ)
2120adantr 481 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
22 elfzelz 13256 . . . . 5 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
2322adantl 482 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ)
24 simplr 766 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ𝑁))
2519zcnd 12427 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2625adantr 481 . . . . . . . . 9 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℂ)
2726adantr 481 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ)
28 1cnd 10970 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 1 ∈ ℂ)
2927, 28npcand 11336 . . . . . . 7 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3029fveq2d 6778 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
3124, 30sseqtrrd 3962 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ‘((𝑁 − 1) + 1)))
32 fznuz 13338 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3332adantl 482 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3431, 33ssneldd 3924 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
3523, 34eldifd 3898 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴))
36 fveqeq2 6783 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) = 1 ↔ (𝐹𝑛) = 1))
37 eldifi 4061 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
38 eldifn 4062 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
3938, 12syl 17 . . . . . . 7 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
4039, 13eqeltrdi 2847 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
4116fvmpt2 6886 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4237, 40, 41syl2anc 584 . . . . 5 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4342, 39eqtrd 2778 . . . 4 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
4436, 43vtoclga 3513 . . 3 (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹𝑛) = 1)
4535, 44syl 17 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 1)
462, 3, 5, 21, 45seqid 13768 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  wss 3887  ifcif 4459  cmpt 5157  cres 5591  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722
This theorem is referenced by:  prodrblem2  15641
  Copyright terms: Public domain W3C validator