MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem Structured version   Visualization version   GIF version

Theorem prodrblem 15962
Description: Lemma for prodrb 15965. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
prodrblem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)   𝑁(𝑘)

Proof of Theorem prodrblem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mullid 11258 . . 3 (𝑛 ∈ ℂ → (1 · 𝑛) = 𝑛)
21adantl 481 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (1 · 𝑛) = 𝑛)
3 1cnd 11254 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 1 ∈ ℂ)
4 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 480 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 iftrue 4537 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
76adantl 481 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8 prodmo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 715 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
107, 9eqeltrd 2839 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1110ex 412 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
12 iffalse 4540 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
13 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
1412, 13eqeltrdi 2847 . . . . . 6 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1511, 14pm2.61d1 180 . . . . 5 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
16 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1715, 16fmptd 7134 . . . 4 (𝜑𝐹:ℤ⟶ℂ)
18 uzssz 12897 . . . . 5 (ℤ𝑀) ⊆ ℤ
1918, 4sselid 3993 . . . 4 (𝜑𝑁 ∈ ℤ)
2017, 19ffvelcdmd 7105 . . 3 (𝜑 → (𝐹𝑁) ∈ ℂ)
2120adantr 480 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
22 elfzelz 13561 . . . . 5 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
2322adantl 481 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ)
24 simplr 769 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ𝑁))
2519zcnd 12721 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2625adantr 480 . . . . . . . . 9 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℂ)
2726adantr 480 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ)
28 1cnd 11254 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 1 ∈ ℂ)
2927, 28npcand 11622 . . . . . . 7 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3029fveq2d 6911 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
3124, 30sseqtrrd 4037 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ‘((𝑁 − 1) + 1)))
32 fznuz 13646 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3332adantl 481 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3431, 33ssneldd 3998 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
3523, 34eldifd 3974 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴))
36 fveqeq2 6916 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) = 1 ↔ (𝐹𝑛) = 1))
37 eldifi 4141 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
38 eldifn 4142 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
3938, 12syl 17 . . . . . . 7 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
4039, 13eqeltrdi 2847 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
4116fvmpt2 7027 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4237, 40, 41syl2anc 584 . . . . 5 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4342, 39eqtrd 2775 . . . 4 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
4436, 43vtoclga 3577 . . 3 (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹𝑛) = 1)
4535, 44syl 17 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 1)
462, 3, 5, 21, 45seqid 14085 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  wss 3963  ifcif 4531  cmpt 5231  cres 5691  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cz 12611  cuz 12876  ...cfz 13544  seqcseq 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040
This theorem is referenced by:  prodrblem2  15964
  Copyright terms: Public domain W3C validator