MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem Structured version   Visualization version   GIF version

Theorem prodrblem 15285
Description: Lemma for prodrb 15288. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
prodrblem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑀(𝑘)   𝑁(𝑘)

Proof of Theorem prodrblem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 mulid2 10642 . . 3 (𝑛 ∈ ℂ → (1 · 𝑛) = 𝑛)
21adantl 484 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (1 · 𝑛) = 𝑛)
3 1cnd 10638 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 1 ∈ ℂ)
4 prodrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 483 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 iftrue 4475 . . . . . . . . 9 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
76adantl 484 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8 prodmo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 713 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
107, 9eqeltrd 2915 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1110ex 415 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
12 iffalse 4478 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
13 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
1412, 13eqeltrdi 2923 . . . . . 6 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
1511, 14pm2.61d1 182 . . . . 5 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
16 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1715, 16fmptd 6880 . . . 4 (𝜑𝐹:ℤ⟶ℂ)
18 uzssz 12267 . . . . 5 (ℤ𝑀) ⊆ ℤ
1918, 4sseldi 3967 . . . 4 (𝜑𝑁 ∈ ℤ)
2017, 19ffvelrnd 6854 . . 3 (𝜑 → (𝐹𝑁) ∈ ℂ)
2120adantr 483 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
22 elfzelz 12911 . . . . 5 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
2322adantl 484 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ)
24 simplr 767 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ𝑁))
2519zcnd 12091 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
2625adantr 483 . . . . . . . . 9 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℂ)
2726adantr 483 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ)
28 1cnd 10638 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 1 ∈ ℂ)
2927, 28npcand 11003 . . . . . . 7 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3029fveq2d 6676 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
3124, 30sseqtrrd 4010 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ‘((𝑁 − 1) + 1)))
32 fznuz 12992 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3332adantl 484 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3431, 33ssneldd 3972 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
3523, 34eldifd 3949 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴))
36 fveqeq2 6681 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) = 1 ↔ (𝐹𝑛) = 1))
37 eldifi 4105 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
38 eldifn 4106 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
3938, 12syl 17 . . . . . . 7 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) = 1)
4039, 13eqeltrdi 2923 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
4116fvmpt2 6781 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4237, 40, 41syl2anc 586 . . . . 5 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
4342, 39eqtrd 2858 . . . 4 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 1)
4436, 43vtoclga 3576 . . 3 (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹𝑛) = 1)
4535, 44syl 17 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 1)
462, 3, 5, 21, 45seqid 13418 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3935  wss 3938  ifcif 4469  cmpt 5148  cres 5559  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373
This theorem is referenced by:  prodrblem2  15287
  Copyright terms: Public domain W3C validator