| Step | Hyp | Ref
| Expression |
| 1 | | mullid 11234 |
. . 3
⊢ (𝑛 ∈ ℂ → (1
· 𝑛) = 𝑛) |
| 2 | 1 | adantl 481 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ ℂ) → (1 · 𝑛) = 𝑛) |
| 3 | | 1cnd 11230 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 1 ∈
ℂ) |
| 4 | | prodrb.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | 4 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | | iftrue 4506 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) = 𝐵) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) = 𝐵) |
| 8 | | prodmo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 9 | 8 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 10 | 7, 9 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
| 11 | 10 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ)) |
| 12 | | iffalse 4509 |
. . . . . . 7
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) = 1) |
| 13 | | ax-1cn 11187 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 14 | 12, 13 | eqeltrdi 2842 |
. . . . . 6
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
| 15 | 11, 14 | pm2.61d1 180 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
| 16 | | prodmo.1 |
. . . . 5
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 17 | 15, 16 | fmptd 7104 |
. . . 4
⊢ (𝜑 → 𝐹:ℤ⟶ℂ) |
| 18 | | uzssz 12873 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 19 | 18, 4 | sselid 3956 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | 17, 19 | ffvelcdmd 7075 |
. . 3
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℂ) |
| 21 | 20 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (𝐹‘𝑁) ∈ ℂ) |
| 22 | | elfzelz 13541 |
. . . . 5
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
| 23 | 22 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ) |
| 24 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ≥‘𝑁)) |
| 25 | 19 | zcnd 12698 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → 𝑁 ∈ ℂ) |
| 27 | 26 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ) |
| 28 | | 1cnd 11230 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 1 ∈
ℂ) |
| 29 | 27, 28 | npcand 11598 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 30 | 29 | fveq2d 6880 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
| 31 | 24, 30 | sseqtrrd 3996 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆
(ℤ≥‘((𝑁 − 1) + 1))) |
| 32 | | fznuz 13626 |
. . . . . 6
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ≥‘((𝑁 − 1) +
1))) |
| 33 | 32 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
| 34 | 31, 33 | ssneldd 3961 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ 𝐴) |
| 35 | 23, 34 | eldifd 3937 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴)) |
| 36 | | fveqeq2 6885 |
. . . 4
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) = 1 ↔ (𝐹‘𝑛) = 1)) |
| 37 | | eldifi 4106 |
. . . . . 6
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ) |
| 38 | | eldifn 4107 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
| 39 | 38, 12 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) = 1) |
| 40 | 39, 13 | eqeltrdi 2842 |
. . . . . 6
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
| 41 | 16 | fvmpt2 6997 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 42 | 37, 40, 41 | syl2anc 584 |
. . . . 5
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 43 | 42, 39 | eqtrd 2770 |
. . . 4
⊢ (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑘) = 1) |
| 44 | 36, 43 | vtoclga 3556 |
. . 3
⊢ (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹‘𝑛) = 1) |
| 45 | 35, 44 | syl 17 |
. 2
⊢ (((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑛) = 1) |
| 46 | 2, 3, 5, 21, 45 | seqid 14065 |
1
⊢ ((𝜑 ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( · , 𝐹)) |