Step | Hyp | Ref
| Expression |
1 | | supinf.1 |
. . 3
⊢ (𝜑 → < Or 𝐴) |
2 | | supinf.2 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) |
3 | 1, 2 | supcl 9491 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, < ) ∈ 𝐴) |
4 | | breq1 5146 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (𝑥 < 𝑤 ↔ sup(𝐵, 𝐴, < ) < 𝑤)) |
5 | 4 | notbid 317 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (¬ 𝑥 < 𝑤 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
6 | 5 | ralbidv 3168 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
7 | 1, 2 | supub 9492 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, < ) < 𝑣)) |
8 | 7 | ralrimiv 3135 |
. . . . 5
⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣) |
9 | | breq2 5147 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → (sup(𝐵, 𝐴, < ) < 𝑣 ↔ sup(𝐵, 𝐴, < ) < 𝑤)) |
10 | 9 | notbid 317 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
11 | 10 | cbvralvw 3225 |
. . . . 5
⊢
(∀𝑣 ∈
𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤) |
12 | 8, 11 | sylib 217 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤) |
13 | 6, 3, 12 | elrabd 3682 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, < ) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}) |
14 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → (𝑥 < 𝑤 ↔ 𝑣 < 𝑤)) |
15 | 14 | notbid 317 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤)) |
16 | 15 | ralbidv 3168 |
. . . . . 6
⊢ (𝑥 = 𝑣 → (∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤)) |
17 | 16 | elrab 3680 |
. . . . 5
⊢ (𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤} ↔ (𝑣 ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤)) |
18 | | breq2 5147 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑤)) |
19 | 18 | cbvrexvw 3226 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 𝑦 < 𝑧 ↔ ∃𝑤 ∈ 𝐵 𝑦 < 𝑤) |
20 | 19 | imbi2i 335 |
. . . . . . . . . 10
⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤)) |
21 | 20 | ralbii 3083 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤)) |
22 | 21 | anbi2i 621 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
23 | 22 | rexbii 3084 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
24 | 2, 23 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
25 | 1, 24 | supnub 9495 |
. . . . 5
⊢ (𝜑 → ((𝑣 ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤) → ¬ 𝑣 < sup(𝐵, 𝐴, < ))) |
26 | 17, 25 | biimtrid 241 |
. . . 4
⊢ (𝜑 → (𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤} → ¬ 𝑣 < sup(𝐵, 𝐴, < ))) |
27 | 26 | imp 405 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}) → ¬ 𝑣 < sup(𝐵, 𝐴, < )) |
28 | 1, 3, 13, 27 | infmin 9527 |
. 2
⊢ (𝜑 → inf({𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ) = sup(𝐵, 𝐴, < )) |
29 | 28 | eqcomd 2732 |
1
⊢ (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < )) |