Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supinf Structured version   Visualization version   GIF version

Theorem supinf 41985
Description: The supremum is the infimum of the upper bounds. (Contributed by SN, 29-Jun-2025.)
Hypotheses
Ref Expression
supinf.1 (𝜑< Or 𝐴)
supinf.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
Assertion
Ref Expression
supinf (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem supinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 supinf.1 . . 3 (𝜑< Or 𝐴)
2 supinf.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
31, 2supcl 9491 . . 3 (𝜑 → sup(𝐵, 𝐴, < ) ∈ 𝐴)
4 breq1 5146 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, < ) → (𝑥 < 𝑤 ↔ sup(𝐵, 𝐴, < ) < 𝑤))
54notbid 317 . . . . 5 (𝑥 = sup(𝐵, 𝐴, < ) → (¬ 𝑥 < 𝑤 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤))
65ralbidv 3168 . . . 4 (𝑥 = sup(𝐵, 𝐴, < ) → (∀𝑤𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤))
71, 2supub 9492 . . . . . 6 (𝜑 → (𝑣𝐵 → ¬ sup(𝐵, 𝐴, < ) < 𝑣))
87ralrimiv 3135 . . . . 5 (𝜑 → ∀𝑣𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣)
9 breq2 5147 . . . . . . 7 (𝑣 = 𝑤 → (sup(𝐵, 𝐴, < ) < 𝑣 ↔ sup(𝐵, 𝐴, < ) < 𝑤))
109notbid 317 . . . . . 6 (𝑣 = 𝑤 → (¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤))
1110cbvralvw 3225 . . . . 5 (∀𝑣𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)
128, 11sylib 217 . . . 4 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)
136, 3, 12elrabd 3682 . . 3 (𝜑 → sup(𝐵, 𝐴, < ) ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤})
14 breq1 5146 . . . . . . . 8 (𝑥 = 𝑣 → (𝑥 < 𝑤𝑣 < 𝑤))
1514notbid 317 . . . . . . 7 (𝑥 = 𝑣 → (¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤))
1615ralbidv 3168 . . . . . 6 (𝑥 = 𝑣 → (∀𝑤𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤𝐵 ¬ 𝑣 < 𝑤))
1716elrab 3680 . . . . 5 (𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤} ↔ (𝑣𝐴 ∧ ∀𝑤𝐵 ¬ 𝑣 < 𝑤))
18 breq2 5147 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
1918cbvrexvw 3226 . . . . . . . . . . 11 (∃𝑧𝐵 𝑦 < 𝑧 ↔ ∃𝑤𝐵 𝑦 < 𝑤)
2019imbi2i 335 . . . . . . . . . 10 ((𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤))
2120ralbii 3083 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧) ↔ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤))
2221anbi2i 621 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
2322rexbii 3084 . . . . . . 7 (∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)) ↔ ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
242, 23sylib 217 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
251, 24supnub 9495 . . . . 5 (𝜑 → ((𝑣𝐴 ∧ ∀𝑤𝐵 ¬ 𝑣 < 𝑤) → ¬ 𝑣 < sup(𝐵, 𝐴, < )))
2617, 25biimtrid 241 . . . 4 (𝜑 → (𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤} → ¬ 𝑣 < sup(𝐵, 𝐴, < )))
2726imp 405 . . 3 ((𝜑𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}) → ¬ 𝑣 < sup(𝐵, 𝐴, < ))
281, 3, 13, 27infmin 9527 . 2 (𝜑 → inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ) = sup(𝐵, 𝐴, < ))
2928eqcomd 2732 1 (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3419   class class class wbr 5143   Or wor 5583  supcsup 9473  infcinf 9474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5144  df-opab 5206  df-po 5584  df-so 5585  df-cnv 5680  df-iota 6495  df-riota 7369  df-sup 9475  df-inf 9476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator