Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supinf Structured version   Visualization version   GIF version

Theorem supinf 42254
Description: The supremum is the infimum of the upper bounds. (Contributed by SN, 29-Jun-2025.)
Hypotheses
Ref Expression
supinf.1 (𝜑< Or 𝐴)
supinf.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
Assertion
Ref Expression
supinf (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem supinf
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 supinf.1 . . 3 (𝜑< Or 𝐴)
2 supinf.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)))
31, 2supcl 9337 . . 3 (𝜑 → sup(𝐵, 𝐴, < ) ∈ 𝐴)
4 breq1 5092 . . . . . 6 (𝑥 = sup(𝐵, 𝐴, < ) → (𝑥 < 𝑤 ↔ sup(𝐵, 𝐴, < ) < 𝑤))
54notbid 318 . . . . 5 (𝑥 = sup(𝐵, 𝐴, < ) → (¬ 𝑥 < 𝑤 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤))
65ralbidv 3153 . . . 4 (𝑥 = sup(𝐵, 𝐴, < ) → (∀𝑤𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤))
71, 2supub 9338 . . . . . 6 (𝜑 → (𝑣𝐵 → ¬ sup(𝐵, 𝐴, < ) < 𝑣))
87ralrimiv 3121 . . . . 5 (𝜑 → ∀𝑣𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣)
9 breq2 5093 . . . . . . 7 (𝑣 = 𝑤 → (sup(𝐵, 𝐴, < ) < 𝑣 ↔ sup(𝐵, 𝐴, < ) < 𝑤))
109notbid 318 . . . . . 6 (𝑣 = 𝑤 → (¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤))
1110cbvralvw 3208 . . . . 5 (∀𝑣𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)
128, 11sylib 218 . . . 4 (𝜑 → ∀𝑤𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)
136, 3, 12elrabd 3647 . . 3 (𝜑 → sup(𝐵, 𝐴, < ) ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤})
14 breq1 5092 . . . . . . . 8 (𝑥 = 𝑣 → (𝑥 < 𝑤𝑣 < 𝑤))
1514notbid 318 . . . . . . 7 (𝑥 = 𝑣 → (¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤))
1615ralbidv 3153 . . . . . 6 (𝑥 = 𝑣 → (∀𝑤𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤𝐵 ¬ 𝑣 < 𝑤))
1716elrab 3645 . . . . 5 (𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤} ↔ (𝑣𝐴 ∧ ∀𝑤𝐵 ¬ 𝑣 < 𝑤))
18 breq2 5093 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑦 < 𝑧𝑦 < 𝑤))
1918cbvrexvw 3209 . . . . . . . . . . 11 (∃𝑧𝐵 𝑦 < 𝑧 ↔ ∃𝑤𝐵 𝑦 < 𝑤)
2019imbi2i 336 . . . . . . . . . 10 ((𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤))
2120ralbii 3076 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧) ↔ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤))
2221anbi2i 623 . . . . . . . 8 ((∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
2322rexbii 3077 . . . . . . 7 (∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑧𝐵 𝑦 < 𝑧)) ↔ ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
242, 23sylib 218 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐴 (𝑦 < 𝑥 → ∃𝑤𝐵 𝑦 < 𝑤)))
251, 24supnub 9341 . . . . 5 (𝜑 → ((𝑣𝐴 ∧ ∀𝑤𝐵 ¬ 𝑣 < 𝑤) → ¬ 𝑣 < sup(𝐵, 𝐴, < )))
2617, 25biimtrid 242 . . . 4 (𝜑 → (𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤} → ¬ 𝑣 < sup(𝐵, 𝐴, < )))
2726imp 406 . . 3 ((𝜑𝑣 ∈ {𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}) → ¬ 𝑣 < sup(𝐵, 𝐴, < ))
281, 3, 13, 27infmin 9375 . 2 (𝜑 → inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ) = sup(𝐵, 𝐴, < ))
2928eqcomd 2736 1 (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥𝐴 ∣ ∀𝑤𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393   class class class wbr 5089   Or wor 5521  supcsup 9319  infcinf 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-po 5522  df-so 5523  df-cnv 5622  df-iota 6433  df-riota 7298  df-sup 9321  df-inf 9322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator