| Step | Hyp | Ref
| Expression |
| 1 | | supinf.1 |
. . 3
⊢ (𝜑 → < Or 𝐴) |
| 2 | | supinf.2 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧))) |
| 3 | 1, 2 | supcl 9475 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, < ) ∈ 𝐴) |
| 4 | | breq1 5127 |
. . . . . 6
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (𝑥 < 𝑤 ↔ sup(𝐵, 𝐴, < ) < 𝑤)) |
| 5 | 4 | notbid 318 |
. . . . 5
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (¬ 𝑥 < 𝑤 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
| 6 | 5 | ralbidv 3164 |
. . . 4
⊢ (𝑥 = sup(𝐵, 𝐴, < ) → (∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
| 7 | 1, 2 | supub 9476 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, < ) < 𝑣)) |
| 8 | 7 | ralrimiv 3132 |
. . . . 5
⊢ (𝜑 → ∀𝑣 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣) |
| 9 | | breq2 5128 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → (sup(𝐵, 𝐴, < ) < 𝑣 ↔ sup(𝐵, 𝐴, < ) < 𝑤)) |
| 10 | 9 | notbid 318 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ¬ sup(𝐵, 𝐴, < ) < 𝑤)) |
| 11 | 10 | cbvralvw 3224 |
. . . . 5
⊢
(∀𝑣 ∈
𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑣 ↔ ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤) |
| 12 | 8, 11 | sylib 218 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ¬ sup(𝐵, 𝐴, < ) < 𝑤) |
| 13 | 6, 3, 12 | elrabd 3678 |
. . 3
⊢ (𝜑 → sup(𝐵, 𝐴, < ) ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}) |
| 14 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑥 = 𝑣 → (𝑥 < 𝑤 ↔ 𝑣 < 𝑤)) |
| 15 | 14 | notbid 318 |
. . . . . . 7
⊢ (𝑥 = 𝑣 → (¬ 𝑥 < 𝑤 ↔ ¬ 𝑣 < 𝑤)) |
| 16 | 15 | ralbidv 3164 |
. . . . . 6
⊢ (𝑥 = 𝑣 → (∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤 ↔ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤)) |
| 17 | 16 | elrab 3676 |
. . . . 5
⊢ (𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤} ↔ (𝑣 ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤)) |
| 18 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑦 < 𝑤)) |
| 19 | 18 | cbvrexvw 3225 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
𝐵 𝑦 < 𝑧 ↔ ∃𝑤 ∈ 𝐵 𝑦 < 𝑤) |
| 20 | 19 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤)) |
| 21 | 20 | ralbii 3083 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤)) |
| 22 | 21 | anbi2i 623 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
| 23 | 22 | rexbii 3084 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐵 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
| 24 | 2, 23 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦 < 𝑥 → ∃𝑤 ∈ 𝐵 𝑦 < 𝑤))) |
| 25 | 1, 24 | supnub 9479 |
. . . . 5
⊢ (𝜑 → ((𝑣 ∈ 𝐴 ∧ ∀𝑤 ∈ 𝐵 ¬ 𝑣 < 𝑤) → ¬ 𝑣 < sup(𝐵, 𝐴, < ))) |
| 26 | 17, 25 | biimtrid 242 |
. . . 4
⊢ (𝜑 → (𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤} → ¬ 𝑣 < sup(𝐵, 𝐴, < ))) |
| 27 | 26 | imp 406 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ {𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}) → ¬ 𝑣 < sup(𝐵, 𝐴, < )) |
| 28 | 1, 3, 13, 27 | infmin 9513 |
. 2
⊢ (𝜑 → inf({𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < ) = sup(𝐵, 𝐴, < )) |
| 29 | 28 | eqcomd 2742 |
1
⊢ (𝜑 → sup(𝐵, 𝐴, < ) = inf({𝑥 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐵 ¬ 𝑥 < 𝑤}, 𝐴, < )) |