![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapcod | Structured version Visualization version GIF version |
Description: Compose two mappings. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
mapcod.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) |
mapcod.2 | ⊢ (𝜑 → 𝐺 ∈ (𝐵 ↑m 𝐶)) |
Ref | Expression |
---|---|
mapcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (𝐴 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapcod.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) | |
2 | elmapex 8906 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | simpld 494 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | mapcod.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐵 ↑m 𝐶)) | |
6 | elmapex 8906 | . . . 4 ⊢ (𝐺 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
8 | 7 | simprd 495 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
9 | elmapi 8907 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → 𝐹:𝐵⟶𝐴) | |
10 | 1, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
11 | elmapi 8907 | . . . 4 ⊢ (𝐺 ∈ (𝐵 ↑m 𝐶) → 𝐺:𝐶⟶𝐵) | |
12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐶⟶𝐵) |
13 | 10, 12 | fcod 6773 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐶⟶𝐴) |
14 | 4, 8, 13 | elmapdd 8899 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (𝐴 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∘ ccom 5704 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: evlselv 42542 |
Copyright terms: Public domain | W3C validator |