Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapcod Structured version   Visualization version   GIF version

Theorem mapcod 42361
Description: Compose two mappings. (Contributed by SN, 11-Mar-2025.)
Hypotheses
Ref Expression
mapcod.1 (𝜑𝐹 ∈ (𝐴m 𝐵))
mapcod.2 (𝜑𝐺 ∈ (𝐵m 𝐶))
Assertion
Ref Expression
mapcod (𝜑 → (𝐹𝐺) ∈ (𝐴m 𝐶))

Proof of Theorem mapcod
StepHypRef Expression
1 mapcod.1 . . . 4 (𝜑𝐹 ∈ (𝐴m 𝐵))
2 elmapex 8778 . . . 4 (𝐹 ∈ (𝐴m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2syl 17 . . 3 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
43simpld 494 . 2 (𝜑𝐴 ∈ V)
5 mapcod.2 . . . 4 (𝜑𝐺 ∈ (𝐵m 𝐶))
6 elmapex 8778 . . . 4 (𝐺 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
75, 6syl 17 . . 3 (𝜑 → (𝐵 ∈ V ∧ 𝐶 ∈ V))
87simprd 495 . 2 (𝜑𝐶 ∈ V)
9 elmapi 8779 . . . 4 (𝐹 ∈ (𝐴m 𝐵) → 𝐹:𝐵𝐴)
101, 9syl 17 . . 3 (𝜑𝐹:𝐵𝐴)
11 elmapi 8779 . . . 4 (𝐺 ∈ (𝐵m 𝐶) → 𝐺:𝐶𝐵)
125, 11syl 17 . . 3 (𝜑𝐺:𝐶𝐵)
1310, 12fcod 6681 . 2 (𝜑 → (𝐹𝐺):𝐶𝐴)
144, 8, 13elmapdd 8771 1 (𝜑 → (𝐹𝐺) ∈ (𝐴m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437  ccom 5623  wf 6482  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by:  evlselv  42705
  Copyright terms: Public domain W3C validator