![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapcod | Structured version Visualization version GIF version |
Description: Compose two mappings. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
mapcod.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) |
mapcod.2 | ⊢ (𝜑 → 𝐺 ∈ (𝐵 ↑m 𝐶)) |
Ref | Expression |
---|---|
mapcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (𝐴 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapcod.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) | |
2 | elmapex 8838 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | simpld 495 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | mapcod.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐵 ↑m 𝐶)) | |
6 | elmapex 8838 | . . . 4 ⊢ (𝐺 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐵 ∈ V ∧ 𝐶 ∈ V)) |
8 | 7 | simprd 496 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
9 | elmapi 8839 | . . . 4 ⊢ (𝐹 ∈ (𝐴 ↑m 𝐵) → 𝐹:𝐵⟶𝐴) | |
10 | 1, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
11 | elmapi 8839 | . . . 4 ⊢ (𝐺 ∈ (𝐵 ↑m 𝐶) → 𝐺:𝐶⟶𝐵) | |
12 | 5, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐶⟶𝐵) |
13 | 10, 12 | fcod 6740 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐶⟶𝐴) |
14 | 4, 8, 13 | elmapdd 8831 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈ (𝐴 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ∘ ccom 5679 ⟶wf 6536 (class class class)co 7405 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: evlselv 41156 |
Copyright terms: Public domain | W3C validator |