| Step | Hyp | Ref
| Expression |
| 1 | | blrnps 24418 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟))) |
| 2 | | elblps 24397 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < 𝑟))) |
| 3 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → 𝐷 ∈ (PsMet‘𝑋)) |
| 4 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 5 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
| 6 | | psmetcl 24317 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑦𝐷𝑃) ∈
ℝ*) |
| 7 | 3, 4, 5, 6 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → (𝑦𝐷𝑃) ∈
ℝ*) |
| 8 | | simpl3 1194 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → 𝑟 ∈ ℝ*) |
| 9 | | qbtwnxr 13242 |
. . . . . . . . . . 11
⊢ (((𝑦𝐷𝑃) ∈ ℝ* ∧ 𝑟 ∈ ℝ*
∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟)) |
| 10 | 9 | 3expia 1122 |
. . . . . . . . . 10
⊢ (((𝑦𝐷𝑃) ∈ ℝ* ∧ 𝑟 ∈ ℝ*)
→ ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) |
| 11 | 7, 8, 10 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) |
| 12 | | qre 12995 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℚ → 𝑧 ∈
ℝ) |
| 13 | | simpll1 1213 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 14 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑃 ∈ 𝑋) |
| 15 | | simpll2 1214 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑦 ∈ 𝑋) |
| 16 | | psmetsym 24320 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃)) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃)) |
| 18 | | simprrl 781 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑦𝐷𝑃) < 𝑧) |
| 19 | 17, 18 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) < 𝑧) |
| 20 | | simprl 771 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑧 ∈ ℝ) |
| 21 | | psmetcl 24317 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑃𝐷𝑦) ∈
ℝ*) |
| 22 | 13, 14, 15, 21 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈
ℝ*) |
| 23 | | rexr 11307 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℝ*) |
| 24 | 23 | ad2antrl 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑧 ∈ ℝ*) |
| 25 | 22, 24, 19 | xrltled 13192 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ 𝑧) |
| 26 | | psmetlecl 24325 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ 𝑧)) → (𝑃𝐷𝑦) ∈ ℝ) |
| 27 | 13, 14, 15, 20, 25, 26 | syl122anc 1381 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ) |
| 28 | | difrp 13073 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈
ℝ+)) |
| 29 | 27, 20, 28 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈
ℝ+)) |
| 30 | 19, 29 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈
ℝ+) |
| 31 | 20, 27 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ) |
| 32 | 22 | xrleidd 13194 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦)) |
| 33 | 20 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑧 ∈ ℂ) |
| 34 | 27 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℂ) |
| 35 | 33, 34 | nncand 11625 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑧 − (𝑧 − (𝑃𝐷𝑦))) = (𝑃𝐷𝑦)) |
| 36 | 32, 35 | breqtrrd 5171 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦)))) |
| 37 | | blss2ps 24413 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧)) |
| 38 | 13, 14, 15, 31, 20, 36, 37 | syl33anc 1387 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧)) |
| 39 | | simpll3 1215 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑟 ∈ ℝ*) |
| 40 | | simprrr 782 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑧 < 𝑟) |
| 41 | 24, 39, 40 | xrltled 13192 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → 𝑧 ≤ 𝑟) |
| 42 | | ssblps 24432 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ* ∧ 𝑟 ∈ ℝ*)
∧ 𝑧 ≤ 𝑟) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟)) |
| 43 | 13, 15, 24, 39, 41, 42 | syl221anc 1383 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟)) |
| 44 | 38, 43 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)) |
| 45 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦)))) |
| 46 | 45 | sseq1d 4015 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 47 | 46 | rspcev 3622 |
. . . . . . . . . . . . 13
⊢ (((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)) |
| 48 | 30, 44, 47 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)) |
| 49 | 48 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ ℝ) → (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 50 | 12, 49 | sylan2 593 |
. . . . . . . . . 10
⊢ ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ ℚ) → (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 51 | 50 | rexlimdva 3155 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → (∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 52 | 11, 51 | syld 47 |
. . . . . . . 8
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 53 | 52 | expimpd 453 |
. . . . . . 7
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → ((𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 54 | 2, 53 | sylbid 240 |
. . . . . 6
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 55 | | eleq2 2830 |
. . . . . . 7
⊢ (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃 ∈ 𝐵 ↔ 𝑃 ∈ (𝑦(ball‘𝐷)𝑟))) |
| 56 | | sseq2 4010 |
. . . . . . . 8
⊢ (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 57 | 56 | rexbidv 3179 |
. . . . . . 7
⊢ (𝐵 = (𝑦(ball‘𝐷)𝑟) → (∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))) |
| 58 | 55, 57 | imbi12d 344 |
. . . . . 6
⊢ (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃 ∈ 𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) ↔ (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))) |
| 59 | 54, 58 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃 ∈ 𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))) |
| 60 | 59 | 3expib 1123 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃 ∈ 𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))) |
| 61 | 60 | rexlimdvv 3212 |
. . 3
⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃 ∈ 𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))) |
| 62 | 1, 61 | sylbid 240 |
. 2
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) → (𝑃 ∈ 𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))) |
| 63 | 62 | 3imp 1111 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) |