Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetlem16N | Structured version Visualization version GIF version |
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihmeetlem14.b | ⊢ 𝐵 = (Base‘𝐾) |
dihmeetlem14.l | ⊢ ≤ = (le‘𝐾) |
dihmeetlem14.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihmeetlem14.j | ⊢ ∨ = (join‘𝐾) |
dihmeetlem14.m | ⊢ ∧ = (meet‘𝐾) |
dihmeetlem14.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihmeetlem14.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihmeetlem14.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihmeetlem14.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihmeetlem16N | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑝)) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem14.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dihmeetlem14.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | dihmeetlem14.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dihmeetlem14.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | dihmeetlem14.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
6 | dihmeetlem14.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | dihmeetlem14.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | dihmeetlem14.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
9 | dihmeetlem14.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
10 | eqid 2738 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dihmeetlem15N 39102 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘𝑟) ∩ (𝐼‘𝑝)) = {(0g‘𝑈)}) |
12 | 11 | oveq2d 7248 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ ((𝐼‘𝑟) ∩ (𝐼‘𝑝))) = ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ {(0g‘𝑈)})) |
13 | simpl1 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | simpl2 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
15 | simpl3l 1230 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝑝 ∈ 𝐴) | |
16 | 1, 6 | atbase 37070 | . . . 4 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝑝 ∈ 𝐵) |
18 | simpr1 1196 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊)) | |
19 | simpr2 1197 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝑟 ≤ 𝑌) | |
20 | simpr3 1198 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝑌 ∧ 𝑝) ≤ 𝑊) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | dihmeetlem14N 39101 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ ((𝐼‘𝑟) ∩ (𝐼‘𝑝))) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) |
22 | 13, 14, 17, 18, 19, 20, 21 | syl33anc 1387 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ ((𝐼‘𝑟) ∩ (𝐼‘𝑝))) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) |
23 | 3, 7, 13 | dvhlmod 38891 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝑈 ∈ LMod) |
24 | simpl1l 1226 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝐾 ∈ HL) | |
25 | 24 | hllatd 37145 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → 𝐾 ∈ Lat) |
26 | 1, 5 | latmcl 17974 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → (𝑌 ∧ 𝑝) ∈ 𝐵) |
27 | 25, 14, 17, 26 | syl3anc 1373 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝑌 ∧ 𝑝) ∈ 𝐵) |
28 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
29 | 1, 3, 9, 7, 28 | dihlss 39031 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∧ 𝑝) ∈ 𝐵) → (𝐼‘(𝑌 ∧ 𝑝)) ∈ (LSubSp‘𝑈)) |
30 | 13, 27, 29 | syl2anc 587 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑝)) ∈ (LSubSp‘𝑈)) |
31 | 28 | lsssubg 20022 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝐼‘(𝑌 ∧ 𝑝)) ∈ (LSubSp‘𝑈)) → (𝐼‘(𝑌 ∧ 𝑝)) ∈ (SubGrp‘𝑈)) |
32 | 23, 30, 31 | syl2anc 587 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑝)) ∈ (SubGrp‘𝑈)) |
33 | 10, 8 | lsm01 19089 | . . 3 ⊢ ((𝐼‘(𝑌 ∧ 𝑝)) ∈ (SubGrp‘𝑈) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ {(0g‘𝑈)}) = (𝐼‘(𝑌 ∧ 𝑝))) |
34 | 32, 33 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → ((𝐼‘(𝑌 ∧ 𝑝)) ⊕ {(0g‘𝑈)}) = (𝐼‘(𝑌 ∧ 𝑝))) |
35 | 12, 22, 34 | 3eqtr3rd 2787 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) ∧ ((𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊) ∧ 𝑟 ≤ 𝑌 ∧ (𝑌 ∧ 𝑝) ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑝)) = ((𝐼‘𝑌) ∩ (𝐼‘𝑝))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∩ cin 3880 {csn 4556 class class class wbr 5068 ‘cfv 6398 (class class class)co 7232 Basecbs 16788 lecple 16837 0gc0g 16972 joincjn 17846 meetcmee 17847 Latclat 17965 SubGrpcsubg 18565 LSSumclsm 19051 LModclmod 19927 LSubSpclss 19996 Atomscatm 37044 HLchlt 37131 LHypclh 37765 DVecHcdvh 38859 DIsoHcdih 39009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-riotaBAD 36734 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-tpos 7989 df-undef 8036 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-struct 16728 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-mulr 16844 df-sca 16846 df-vsca 16847 df-0g 16974 df-mre 17117 df-mrc 17118 df-acs 17120 df-proset 17830 df-poset 17848 df-plt 17864 df-lub 17880 df-glb 17881 df-join 17882 df-meet 17883 df-p0 17959 df-p1 17960 df-lat 17966 df-clat 18033 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-submnd 18247 df-grp 18396 df-minusg 18397 df-sbg 18398 df-subg 18568 df-cntz 18739 df-lsm 19053 df-cmn 19200 df-abl 19201 df-mgp 19533 df-ur 19545 df-ring 19592 df-oppr 19669 df-dvdsr 19687 df-unit 19688 df-invr 19718 df-dvr 19729 df-drng 19797 df-lmod 19929 df-lss 19997 df-lsp 20037 df-lvec 20168 df-oposet 36957 df-ol 36959 df-oml 36960 df-covers 37047 df-ats 37048 df-atl 37079 df-cvlat 37103 df-hlat 37132 df-llines 37279 df-lplanes 37280 df-lvols 37281 df-lines 37282 df-psubsp 37284 df-pmap 37285 df-padd 37577 df-lhyp 37769 df-laut 37770 df-ldil 37885 df-ltrn 37886 df-trl 37940 df-tendo 38536 df-edring 38538 df-disoa 38810 df-dvech 38860 df-dib 38920 df-dic 38954 df-dih 39010 |
This theorem is referenced by: dihmeetlem18N 39105 |
Copyright terms: Public domain | W3C validator |