Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(MetOpen‘(𝑦
∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))) = (MetOpen‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))) |
2 | | xlebnum.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
3 | | 1rp 12663 |
. . . 4
⊢ 1 ∈
ℝ+ |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) |
5 | 4 | stdbdmet 23578 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈
ℝ+) → (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋)) |
6 | 2, 3, 5 | sylancl 585 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋)) |
7 | | rpxr 12668 |
. . . . . 6
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
8 | 3, 7 | mp1i 13 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ*) |
9 | | 0lt1 11427 |
. . . . . 6
⊢ 0 <
1 |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 < 1) |
11 | | xlebnum.j |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐷) |
12 | 4, 11 | stdbdmopn 23580 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈
ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))) |
13 | 2, 8, 10, 12 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → 𝐽 = (MetOpen‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))) |
14 | | xlebnum.c |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Comp) |
15 | 13, 14 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (MetOpen‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1))) ∈ Comp) |
16 | | xlebnum.s |
. . . 4
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
17 | 16, 13 | sseqtrd 3957 |
. . 3
⊢ (𝜑 → 𝑈 ⊆ (MetOpen‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))) |
18 | | xlebnum.u |
. . 3
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
19 | 1, 6, 15, 17, 18 | lebnum 24033 |
. 2
⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢) |
20 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
21 | | ifcl 4501 |
. . . . 5
⊢ ((𝑟 ∈ ℝ+
∧ 1 ∈ ℝ+) → if(𝑟 ≤ 1, 𝑟, 1) ∈
ℝ+) |
22 | 20, 3, 21 | sylancl 585 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → if(𝑟 ≤ 1, 𝑟, 1) ∈
ℝ+) |
23 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
24 | 3, 7 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 1 ∈
ℝ*) |
25 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 0 < 1) |
26 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
27 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ∈
ℝ+) |
28 | | rpxr 12668 |
. . . . . . . . . 10
⊢ (if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+ →
if(𝑟 ≤ 1, 𝑟, 1) ∈
ℝ*) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ∈
ℝ*) |
30 | | rpre 12667 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
31 | 30 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑟 ∈ ℝ) |
32 | | 1re 10906 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
33 | | min2 12853 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ ℝ ∧ 1 ∈
ℝ) → if(𝑟 ≤
1, 𝑟, 1) ≤
1) |
34 | 31, 32, 33 | sylancl 585 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 1) |
35 | 4 | stdbdbl 23579 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈
ℝ* ∧ 0 < 1) ∧ (𝑥 ∈ 𝑋 ∧ if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ* ∧
if(𝑟 ≤ 1, 𝑟, 1) ≤ 1)) → (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1))) |
36 | 23, 24, 25, 26, 29, 34, 35 | syl33anc 1383 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1))) |
37 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋)) |
38 | | metxmet 23395 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (Met‘𝑋) → (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋)) |
39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋)) |
40 | | rpxr 12668 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
41 | 40 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑟 ∈ ℝ*) |
42 | | min1 12852 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ ℝ ∧ 1 ∈
ℝ) → if(𝑟 ≤
1, 𝑟, 1) ≤ 𝑟) |
43 | 31, 32, 42 | sylancl 585 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → if(𝑟 ≤ 1, 𝑟, 1) ≤ 𝑟) |
44 | | ssbl 23484 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)) ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ* ∧ 𝑟 ∈ ℝ*)
∧ if(𝑟 ≤ 1, 𝑟, 1) ≤ 𝑟) → (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟)) |
45 | 39, 26, 29, 41, 43, 44 | syl221anc 1379 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟)) |
46 | 36, 45 | eqsstrrd 3956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟)) |
47 | | sstr2 3924 |
. . . . . . 7
⊢ ((𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) → ((𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → ((𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
49 | 48 | reximdv 3201 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (∃𝑢 ∈ 𝑈 (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
50 | 49 | ralimdva 3102 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
51 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (𝑥(ball‘𝐷)𝑑) = (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1))) |
52 | 51 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
53 | 52 | rexbidv 3225 |
. . . . . 6
⊢ (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
54 | 53 | ralbidv 3120 |
. . . . 5
⊢ (𝑑 = if(𝑟 ≤ 1, 𝑟, 1) → (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢)) |
55 | 54 | rspcev 3552 |
. . . 4
⊢
((if(𝑟 ≤ 1, 𝑟, 1) ∈ ℝ+
∧ ∀𝑥 ∈
𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)if(𝑟 ≤ 1, 𝑟, 1)) ⊆ 𝑢) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |
56 | 22, 50, 55 | syl6an 680 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
57 | 56 | rexlimdva 3212 |
. 2
⊢ (𝜑 → (∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘(𝑦 ∈ 𝑋, 𝑧 ∈ 𝑋 ↦ if((𝑦𝐷𝑧) ≤ 1, (𝑦𝐷𝑧), 1)))𝑟) ⊆ 𝑢 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢)) |
58 | 19, 57 | mpd 15 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) |