Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(MetOpenβ(π¦
β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1))) = (MetOpenβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1))) |
2 | | xlebnum.d |
. . . 4
β’ (π β π· β (βMetβπ)) |
3 | | 1rp 12974 |
. . . 4
β’ 1 β
β+ |
4 | | eqid 2732 |
. . . . 5
β’ (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) = (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) |
5 | 4 | stdbdmet 24016 |
. . . 4
β’ ((π· β (βMetβπ) β§ 1 β
β+) β (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (Metβπ)) |
6 | 2, 3, 5 | sylancl 586 |
. . 3
β’ (π β (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (Metβπ)) |
7 | | rpxr 12979 |
. . . . . 6
β’ (1 β
β+ β 1 β β*) |
8 | 3, 7 | mp1i 13 |
. . . . 5
β’ (π β 1 β
β*) |
9 | | 0lt1 11732 |
. . . . . 6
β’ 0 <
1 |
10 | 9 | a1i 11 |
. . . . 5
β’ (π β 0 < 1) |
11 | | xlebnum.j |
. . . . . 6
β’ π½ = (MetOpenβπ·) |
12 | 4, 11 | stdbdmopn 24018 |
. . . . 5
β’ ((π· β (βMetβπ) β§ 1 β
β* β§ 0 < 1) β π½ = (MetOpenβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))) |
13 | 2, 8, 10, 12 | syl3anc 1371 |
. . . 4
β’ (π β π½ = (MetOpenβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))) |
14 | | xlebnum.c |
. . . 4
β’ (π β π½ β Comp) |
15 | 13, 14 | eqeltrrd 2834 |
. . 3
β’ (π β (MetOpenβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1))) β Comp) |
16 | | xlebnum.s |
. . . 4
β’ (π β π β π½) |
17 | 16, 13 | sseqtrd 4021 |
. . 3
β’ (π β π β (MetOpenβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))) |
18 | | xlebnum.u |
. . 3
β’ (π β π = βͺ π) |
19 | 1, 6, 15, 17, 18 | lebnum 24471 |
. 2
β’ (π β βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’) |
20 | | simpr 485 |
. . . . 5
β’ ((π β§ π β β+) β π β
β+) |
21 | | ifcl 4572 |
. . . . 5
β’ ((π β β+
β§ 1 β β+) β if(π β€ 1, π, 1) β
β+) |
22 | 20, 3, 21 | sylancl 586 |
. . . 4
β’ ((π β§ π β β+) β if(π β€ 1, π, 1) β
β+) |
23 | 2 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β π· β (βMetβπ)) |
24 | 3, 7 | mp1i 13 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β 1 β
β*) |
25 | 9 | a1i 11 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β 0 < 1) |
26 | | simpr 485 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β π₯ β π) |
27 | 22 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π β β+) β§ π₯ β π) β if(π β€ 1, π, 1) β
β+) |
28 | | rpxr 12979 |
. . . . . . . . . 10
β’ (if(π β€ 1, π, 1) β β+ β
if(π β€ 1, π, 1) β
β*) |
29 | 27, 28 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β if(π β€ 1, π, 1) β
β*) |
30 | | rpre 12978 |
. . . . . . . . . . 11
β’ (π β β+
β π β
β) |
31 | 30 | ad2antlr 725 |
. . . . . . . . . 10
β’ (((π β§ π β β+) β§ π₯ β π) β π β β) |
32 | | 1re 11210 |
. . . . . . . . . 10
β’ 1 β
β |
33 | | min2 13165 |
. . . . . . . . . 10
β’ ((π β β β§ 1 β
β) β if(π β€
1, π, 1) β€
1) |
34 | 31, 32, 33 | sylancl 586 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β if(π β€ 1, π, 1) β€ 1) |
35 | 4 | stdbdbl 24017 |
. . . . . . . . 9
β’ (((π· β (βMetβπ) β§ 1 β
β* β§ 0 < 1) β§ (π₯ β π β§ if(π β€ 1, π, 1) β β* β§
if(π β€ 1, π, 1) β€ 1)) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))if(π β€ 1, π, 1)) = (π₯(ballβπ·)if(π β€ 1, π, 1))) |
36 | 23, 24, 25, 26, 29, 34, 35 | syl33anc 1385 |
. . . . . . . 8
β’ (((π β§ π β β+) β§ π₯ β π) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))if(π β€ 1, π, 1)) = (π₯(ballβπ·)if(π β€ 1, π, 1))) |
37 | 6 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β β+) β§ π₯ β π) β (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (Metβπ)) |
38 | | metxmet 23831 |
. . . . . . . . . 10
β’ ((π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (Metβπ) β (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (βMetβπ)) |
39 | 37, 38 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β (π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (βMetβπ)) |
40 | | rpxr 12979 |
. . . . . . . . . 10
β’ (π β β+
β π β
β*) |
41 | 40 | ad2antlr 725 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β π β β*) |
42 | | min1 13164 |
. . . . . . . . . 10
β’ ((π β β β§ 1 β
β) β if(π β€
1, π, 1) β€ π) |
43 | 31, 32, 42 | sylancl 586 |
. . . . . . . . 9
β’ (((π β§ π β β+) β§ π₯ β π) β if(π β€ 1, π, 1) β€ π) |
44 | | ssbl 23920 |
. . . . . . . . 9
β’ ((((π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)) β (βMetβπ) β§ π₯ β π) β§ (if(π β€ 1, π, 1) β β* β§ π β β*)
β§ if(π β€ 1, π, 1) β€ π) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))if(π β€ 1, π, 1)) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π)) |
45 | 39, 26, 29, 41, 43, 44 | syl221anc 1381 |
. . . . . . . 8
β’ (((π β§ π β β+) β§ π₯ β π) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))if(π β€ 1, π, 1)) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π)) |
46 | 36, 45 | eqsstrrd 4020 |
. . . . . . 7
β’ (((π β§ π β β+) β§ π₯ β π) β (π₯(ballβπ·)if(π β€ 1, π, 1)) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π)) |
47 | | sstr2 3988 |
. . . . . . 7
β’ ((π₯(ballβπ·)if(π β€ 1, π, 1)) β (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β ((π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
48 | 46, 47 | syl 17 |
. . . . . 6
β’ (((π β§ π β β+) β§ π₯ β π) β ((π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
49 | 48 | reximdv 3170 |
. . . . 5
β’ (((π β§ π β β+) β§ π₯ β π) β (βπ’ β π (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β βπ’ β π (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
50 | 49 | ralimdva 3167 |
. . . 4
β’ ((π β§ π β β+) β
(βπ₯ β π βπ’ β π (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β βπ₯ β π βπ’ β π (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
51 | | oveq2 7413 |
. . . . . . . 8
β’ (π = if(π β€ 1, π, 1) β (π₯(ballβπ·)π) = (π₯(ballβπ·)if(π β€ 1, π, 1))) |
52 | 51 | sseq1d 4012 |
. . . . . . 7
β’ (π = if(π β€ 1, π, 1) β ((π₯(ballβπ·)π) β π’ β (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
53 | 52 | rexbidv 3178 |
. . . . . 6
β’ (π = if(π β€ 1, π, 1) β (βπ’ β π (π₯(ballβπ·)π) β π’ β βπ’ β π (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
54 | 53 | ralbidv 3177 |
. . . . 5
β’ (π = if(π β€ 1, π, 1) β (βπ₯ β π βπ’ β π (π₯(ballβπ·)π) β π’ β βπ₯ β π βπ’ β π (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’)) |
55 | 54 | rspcev 3612 |
. . . 4
β’
((if(π β€ 1, π, 1) β β+
β§ βπ₯ β
π βπ’ β π (π₯(ballβπ·)if(π β€ 1, π, 1)) β π’) β βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβπ·)π) β π’) |
56 | 22, 50, 55 | syl6an 682 |
. . 3
β’ ((π β§ π β β+) β
(βπ₯ β π βπ’ β π (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβπ·)π) β π’)) |
57 | 56 | rexlimdva 3155 |
. 2
β’ (π β (βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβ(π¦ β π, π§ β π β¦ if((π¦π·π§) β€ 1, (π¦π·π§), 1)))π) β π’ β βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβπ·)π) β π’)) |
58 | 19, 57 | mpd 15 |
1
β’ (π β βπ β β+ βπ₯ β π βπ’ β π (π₯(ballβπ·)π) β π’) |