![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blhalf | Structured version Visualization version GIF version |
Description: A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.) |
Ref | Expression |
---|---|
blhalf | ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 763 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑀 ∈ (∞Met‘𝑋)) | |
2 | simplr 765 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑌 ∈ 𝑋) | |
3 | simprr 769 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2))) | |
4 | simprl 767 | . . . . . . 7 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℝ) | |
5 | 4 | rehalfcld 11737 | . . . . . 6 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ) |
6 | 5 | rexrd 10542 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ*) |
7 | elbl 22686 | . . . . 5 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ (𝑅 / 2) ∈ ℝ*) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))) | |
8 | 1, 2, 6, 7 | syl3anc 1364 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))) |
9 | 3, 8 | mpbid 233 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ 𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))) |
10 | 9 | simpld 495 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ 𝑋) |
11 | xmetcl 22629 | . . . . 5 ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝑌𝑀𝑍) ∈ ℝ*) | |
12 | 1, 2, 10, 11 | syl3anc 1364 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ∈ ℝ*) |
13 | 9 | simprd 496 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) < (𝑅 / 2)) |
14 | 12, 6, 13 | xrltled 12398 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 / 2)) |
15 | 5 | recnd 10520 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℂ) |
16 | 4 | recnd 10520 | . . . . 5 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℂ) |
17 | 16 | 2halvesd 11736 | . . . 4 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → ((𝑅 / 2) + (𝑅 / 2)) = 𝑅) |
18 | 15, 15, 17 | mvlraddd 10903 | . . 3 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) = (𝑅 − (𝑅 / 2))) |
19 | 14, 18 | breqtrd 4992 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2))) |
20 | blss2 22702 | . 2 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) ∧ ((𝑅 / 2) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) | |
21 | 1, 2, 10, 5, 4, 19, 20 | syl33anc 1378 | 1 ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ⊆ wss 3863 class class class wbr 4966 ‘cfv 6230 (class class class)co 7021 ℝcr 10387 ℝ*cxr 10525 < clt 10526 ≤ cle 10527 − cmin 10722 / cdiv 11150 2c2 11545 ∞Metcxmet 20217 ballcbl 20219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-po 5367 df-so 5368 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-1st 7550 df-2nd 7551 df-er 8144 df-map 8263 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-2 11553 df-rp 12245 df-xneg 12362 df-xadd 12363 df-xmul 12364 df-psmet 20224 df-xmet 20225 df-bl 20227 |
This theorem is referenced by: met2ndci 22820 iscfil3 23564 cfilfcls 23565 iscmet3lem2 23583 lmcau 23604 lgamucov 25302 sstotbnd2 34609 isbnd2 34618 heiborlem8 34653 |
Copyright terms: Public domain | W3C validator |