MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blhalf Structured version   Visualization version   GIF version

Theorem blhalf 24293
Description: A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 766 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑀 ∈ (∞Met‘𝑋))
2 simplr 768 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑌𝑋)
3 simprr 772 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))
4 simprl 770 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℝ)
54rehalfcld 12429 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ)
65rexrd 11224 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℝ*)
7 elbl 24276 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋 ∧ (𝑅 / 2) ∈ ℝ*) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))))
81, 2, 6, 7syl3anc 1373 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)) ↔ (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2))))
93, 8mpbid 232 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑍𝑋 ∧ (𝑌𝑀𝑍) < (𝑅 / 2)))
109simpld 494 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑍𝑋)
11 xmetcl 24219 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) → (𝑌𝑀𝑍) ∈ ℝ*)
121, 2, 10, 11syl3anc 1373 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ∈ ℝ*)
139simprd 495 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) < (𝑅 / 2))
1412, 6, 13xrltled 13110 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 / 2))
155recnd 11202 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) ∈ ℂ)
164recnd 11202 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → 𝑅 ∈ ℂ)
17162halvesd 12428 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → ((𝑅 / 2) + (𝑅 / 2)) = 𝑅)
1815, 15, 17mvlraddd 11588 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑅 / 2) = (𝑅 − (𝑅 / 2)))
1914, 18breqtrd 5133 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))
20 blss2 24292 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑍𝑋) ∧ ((𝑅 / 2) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑌𝑀𝑍) ≤ (𝑅 − (𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
211, 2, 10, 5, 4, 19, 20syl33anc 1387 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  met2ndci  24410  iscfil3  25173  cfilfcls  25174  iscmet3lem2  25192  lmcau  25213  lgamucov  26948  sstotbnd2  37768  isbnd2  37777  heiborlem8  37812
  Copyright terms: Public domain W3C validator