Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm Structured version   Visualization version   GIF version

Theorem 2atm 39494
Description: An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
2atm.l = (le‘𝐾)
2atm.j = (join‘𝐾)
2atm.m = (meet‘𝐾)
2atm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))

Proof of Theorem 2atm
StepHypRef Expression
1 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑃 𝑄))
2 simp32 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑅 𝑆))
3 simp11 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
43hllatd 39330 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
5 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇𝐴)
6 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 2atm.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39255 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ∈ (Base‘𝐾))
10 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃𝐴)
116, 7atbase 39255 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
13 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
146, 7atbase 39255 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
16 2atm.j . . . . . 6 = (join‘𝐾)
176, 16latjcl 18374 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
184, 12, 15, 17syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
19 simp21 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
20 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
216, 16, 7hlatjcl 39333 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
223, 19, 20, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
23 2atm.l . . . . 5 = (le‘𝐾)
24 2atm.m . . . . 5 = (meet‘𝐾)
256, 23, 24latlem12 18401 . . . 4 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
264, 9, 18, 22, 25syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
271, 2, 26mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ((𝑃 𝑄) (𝑅 𝑆)))
28 hlatl 39326 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
293, 28syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ AtLat)
306, 24latmcl 18375 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
314, 18, 22, 30syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
32 eqid 2729 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
336, 23, 32, 7atlen0 39276 . . . . . 6 (((𝐾 ∈ AtLat ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾) ∧ 𝑇𝐴) ∧ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3429, 31, 5, 27, 33syl31anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3534neneqd 2930 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ¬ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾))
36 simp33 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ≠ (𝑅 𝑆))
3716, 24, 32, 72atmat0 39493 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
383, 10, 13, 19, 20, 36, 37syl33anc 1387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
3938ord 864 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 → ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
4035, 39mt3d 148 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
4123, 7atcmp 39277 . . 3 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4229, 5, 40, 41syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4327, 42mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  0.cp0 18358  Latclat 18366  Atomscatm 39229  AtLatcal 39230  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465
This theorem is referenced by:  cdlemk12  40817  cdlemk12u  40839  cdlemk47  40916
  Copyright terms: Public domain W3C validator