Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm Structured version   Visualization version   GIF version

Theorem 2atm 39546
Description: An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
2atm.l = (le‘𝐾)
2atm.j = (join‘𝐾)
2atm.m = (meet‘𝐾)
2atm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))

Proof of Theorem 2atm
StepHypRef Expression
1 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑃 𝑄))
2 simp32 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑅 𝑆))
3 simp11 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
43hllatd 39382 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
5 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇𝐴)
6 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 2atm.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39307 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ∈ (Base‘𝐾))
10 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃𝐴)
116, 7atbase 39307 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
13 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
146, 7atbase 39307 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
16 2atm.j . . . . . 6 = (join‘𝐾)
176, 16latjcl 18449 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
184, 12, 15, 17syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
19 simp21 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
20 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
216, 16, 7hlatjcl 39385 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
223, 19, 20, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
23 2atm.l . . . . 5 = (le‘𝐾)
24 2atm.m . . . . 5 = (meet‘𝐾)
256, 23, 24latlem12 18476 . . . 4 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
264, 9, 18, 22, 25syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
271, 2, 26mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ((𝑃 𝑄) (𝑅 𝑆)))
28 hlatl 39378 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
293, 28syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ AtLat)
306, 24latmcl 18450 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
314, 18, 22, 30syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
32 eqid 2735 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
336, 23, 32, 7atlen0 39328 . . . . . 6 (((𝐾 ∈ AtLat ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾) ∧ 𝑇𝐴) ∧ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3429, 31, 5, 27, 33syl31anc 1375 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3534neneqd 2937 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ¬ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾))
36 simp33 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ≠ (𝑅 𝑆))
3716, 24, 32, 72atmat0 39545 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
383, 10, 13, 19, 20, 36, 37syl33anc 1387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
3938ord 864 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 → ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
4035, 39mt3d 148 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
4123, 7atcmp 39329 . . 3 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4229, 5, 40, 41syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4327, 42mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  joincjn 18323  meetcmee 18324  0.cp0 18433  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517
This theorem is referenced by:  cdlemk12  40869  cdlemk12u  40891  cdlemk47  40968
  Copyright terms: Public domain W3C validator