Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atm Structured version   Visualization version   GIF version

Theorem 2atm 39484
Description: An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.)
Hypotheses
Ref Expression
2atm.l = (le‘𝐾)
2atm.j = (join‘𝐾)
2atm.m = (meet‘𝐾)
2atm.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2atm (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))

Proof of Theorem 2atm
StepHypRef Expression
1 simp31 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑃 𝑄))
2 simp32 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 (𝑅 𝑆))
3 simp11 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
43hllatd 39320 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
5 simp23 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇𝐴)
6 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
7 2atm.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39245 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ∈ (Base‘𝐾))
10 simp12 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃𝐴)
116, 7atbase 39245 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
13 simp13 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
146, 7atbase 39245 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
16 2atm.j . . . . . 6 = (join‘𝐾)
176, 16latjcl 18509 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
184, 12, 15, 17syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
19 simp21 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
20 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
216, 16, 7hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
223, 19, 20, 21syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
23 2atm.l . . . . 5 = (le‘𝐾)
24 2atm.m . . . . 5 = (meet‘𝐾)
256, 23, 24latlem12 18536 . . . 4 ((𝐾 ∈ Lat ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
264, 9, 18, 22, 25syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆)) ↔ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))))
271, 2, 26mpbi2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 ((𝑃 𝑄) (𝑅 𝑆)))
28 hlatl 39316 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
293, 28syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ AtLat)
306, 24latmcl 18510 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
314, 18, 22, 30syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾))
32 eqid 2740 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
336, 23, 32, 7atlen0 39266 . . . . . 6 (((𝐾 ∈ AtLat ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ (Base‘𝐾) ∧ 𝑇𝐴) ∧ 𝑇 ((𝑃 𝑄) (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3429, 31, 5, 27, 33syl31anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ (0.‘𝐾))
3534neneqd 2951 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ¬ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾))
36 simp33 1211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ≠ (𝑅 𝑆))
3716, 24, 32, 72atmat0 39483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
383, 10, 13, 19, 20, 36, 37syl33anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
3938ord 863 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 → ((𝑃 𝑄) (𝑅 𝑆)) = (0.‘𝐾)))
4035, 39mt3d 148 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
4123, 7atcmp 39267 . . 3 ((𝐾 ∈ AtLat ∧ 𝑇𝐴 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4229, 5, 40, 41syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑇 ((𝑃 𝑄) (𝑅 𝑆)) ↔ 𝑇 = ((𝑃 𝑄) (𝑅 𝑆))))
4327, 42mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  Atomscatm 39219  AtLatcal 39220  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455
This theorem is referenced by:  cdlemk12  40807  cdlemk12u  40829  cdlemk47  40906
  Copyright terms: Public domain W3C validator