MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   GIF version

Theorem metdscnlem 23752
Description: Lemma for metdscn 23753. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
metdscnlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metdscnlem.2 (𝜑𝑆𝑋)
metdscnlem.3 (𝜑𝐴𝑋)
metdscnlem.4 (𝜑𝐵𝑋)
metdscnlem.5 (𝜑𝑅 ∈ ℝ+)
metdscnlem.6 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
Assertion
Ref Expression
metdscnlem (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metdscnlem.2 . . . . . 6 (𝜑𝑆𝑋)
3 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 23745 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
51, 2, 4syl2anc 587 . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
6 metdscnlem.3 . . . . 5 (𝜑𝐴𝑋)
75, 6ffvelrnd 6905 . . . 4 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
8 eliccxr 13023 . . . 4 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
97, 8syl 17 . . 3 (𝜑 → (𝐹𝐴) ∈ ℝ*)
10 metdscnlem.4 . . . . . 6 (𝜑𝐵𝑋)
115, 10ffvelrnd 6905 . . . . 5 (𝜑 → (𝐹𝐵) ∈ (0[,]+∞))
12 eliccxr 13023 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
1311, 12syl 17 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ*)
1413xnegcld 12890 . . 3 (𝜑 → -𝑒(𝐹𝐵) ∈ ℝ*)
159, 14xaddcld 12891 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ∈ ℝ*)
16 xmetcl 23229 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
171, 6, 10, 16syl3anc 1373 . 2 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
18 metdscnlem.5 . . 3 (𝜑𝑅 ∈ ℝ+)
1918rpxrd 12629 . 2 (𝜑𝑅 ∈ ℝ*)
203metdstri 23748 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
211, 2, 6, 10, 20syl22anc 839 . . 3 (𝜑 → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
22 elxrge0 13045 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2322simprbi 500 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
247, 23syl 17 . . . 4 (𝜑 → 0 ≤ (𝐹𝐴))
25 elxrge0 13045 . . . . . . 7 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
2625simprbi 500 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
2711, 26syl 17 . . . . 5 (𝜑 → 0 ≤ (𝐹𝐵))
28 ge0nemnf 12763 . . . . 5 (((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)) → (𝐹𝐵) ≠ -∞)
2913, 27, 28syl2anc 587 . . . 4 (𝜑 → (𝐹𝐵) ≠ -∞)
30 xmetge0 23242 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
311, 6, 10, 30syl3anc 1373 . . . 4 (𝜑 → 0 ≤ (𝐴𝐷𝐵))
32 xlesubadd 12853 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐹𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
339, 13, 17, 24, 29, 31, 32syl33anc 1387 . . 3 (𝜑 → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3421, 33mpbird 260 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵))
35 metdscnlem.6 . 2 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
3615, 17, 19, 34, 35xrlelttrd 12750 1 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wne 2940  wss 3866   class class class wbr 5053  cmpt 5135  ran crn 5552  wf 6376  cfv 6380  (class class class)co 7213  infcinf 9057  0cc0 10729  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cle 10868  +crp 12586  -𝑒cxne 12701   +𝑒 cxad 12702  [,]cicc 12938  distcds 16811  *𝑠cxrs 17005  ∞Metcxmet 20348  MetOpencmopn 20353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-ec 8393  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-2 11893  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-psmet 20355  df-xmet 20356  df-bl 20358
This theorem is referenced by:  metdscn  23753
  Copyright terms: Public domain W3C validator