MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   GIF version

Theorem metdscnlem 24218
Description: Lemma for metdscn 24219. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
metdscnlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metdscnlem.2 (𝜑𝑆𝑋)
metdscnlem.3 (𝜑𝐴𝑋)
metdscnlem.4 (𝜑𝐵𝑋)
metdscnlem.5 (𝜑𝑅 ∈ ℝ+)
metdscnlem.6 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
Assertion
Ref Expression
metdscnlem (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metdscnlem.2 . . . . . 6 (𝜑𝑆𝑋)
3 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 24211 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
51, 2, 4syl2anc 584 . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
6 metdscnlem.3 . . . . 5 (𝜑𝐴𝑋)
75, 6ffvelcdmd 7036 . . . 4 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
8 eliccxr 13352 . . . 4 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
97, 8syl 17 . . 3 (𝜑 → (𝐹𝐴) ∈ ℝ*)
10 metdscnlem.4 . . . . . 6 (𝜑𝐵𝑋)
115, 10ffvelcdmd 7036 . . . . 5 (𝜑 → (𝐹𝐵) ∈ (0[,]+∞))
12 eliccxr 13352 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
1311, 12syl 17 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ*)
1413xnegcld 13219 . . 3 (𝜑 → -𝑒(𝐹𝐵) ∈ ℝ*)
159, 14xaddcld 13220 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ∈ ℝ*)
16 xmetcl 23684 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
171, 6, 10, 16syl3anc 1371 . 2 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
18 metdscnlem.5 . . 3 (𝜑𝑅 ∈ ℝ+)
1918rpxrd 12958 . 2 (𝜑𝑅 ∈ ℝ*)
203metdstri 24214 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
211, 2, 6, 10, 20syl22anc 837 . . 3 (𝜑 → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
22 elxrge0 13374 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2322simprbi 497 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
247, 23syl 17 . . . 4 (𝜑 → 0 ≤ (𝐹𝐴))
25 elxrge0 13374 . . . . . . 7 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
2625simprbi 497 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
2711, 26syl 17 . . . . 5 (𝜑 → 0 ≤ (𝐹𝐵))
28 ge0nemnf 13092 . . . . 5 (((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)) → (𝐹𝐵) ≠ -∞)
2913, 27, 28syl2anc 584 . . . 4 (𝜑 → (𝐹𝐵) ≠ -∞)
30 xmetge0 23697 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
311, 6, 10, 30syl3anc 1371 . . . 4 (𝜑 → 0 ≤ (𝐴𝐷𝐵))
32 xlesubadd 13182 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐹𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
339, 13, 17, 24, 29, 31, 32syl33anc 1385 . . 3 (𝜑 → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3421, 33mpbird 256 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵))
35 metdscnlem.6 . 2 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
3615, 17, 19, 34, 35xrlelttrd 13079 1 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2943  wss 3910   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  0cc0 11051  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  +crp 12915  -𝑒cxne 13030   +𝑒 cxad 13031  [,]cicc 13267  distcds 17142  *𝑠cxrs 17382  ∞Metcxmet 20781  MetOpencmopn 20786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-ec 8650  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-psmet 20788  df-xmet 20789  df-bl 20791
This theorem is referenced by:  metdscn  24219
  Copyright terms: Public domain W3C validator