MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   GIF version

Theorem metdscnlem 24744
Description: Lemma for metdscn 24745. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
metdscnlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metdscnlem.2 (𝜑𝑆𝑋)
metdscnlem.3 (𝜑𝐴𝑋)
metdscnlem.4 (𝜑𝐵𝑋)
metdscnlem.5 (𝜑𝑅 ∈ ℝ+)
metdscnlem.6 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
Assertion
Ref Expression
metdscnlem (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metdscnlem.2 . . . . . 6 (𝜑𝑆𝑋)
3 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 24737 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
51, 2, 4syl2anc 584 . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
6 metdscnlem.3 . . . . 5 (𝜑𝐴𝑋)
75, 6ffvelcdmd 7057 . . . 4 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
8 eliccxr 13396 . . . 4 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
97, 8syl 17 . . 3 (𝜑 → (𝐹𝐴) ∈ ℝ*)
10 metdscnlem.4 . . . . . 6 (𝜑𝐵𝑋)
115, 10ffvelcdmd 7057 . . . . 5 (𝜑 → (𝐹𝐵) ∈ (0[,]+∞))
12 eliccxr 13396 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
1311, 12syl 17 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ*)
1413xnegcld 13260 . . 3 (𝜑 → -𝑒(𝐹𝐵) ∈ ℝ*)
159, 14xaddcld 13261 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ∈ ℝ*)
16 xmetcl 24219 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
171, 6, 10, 16syl3anc 1373 . 2 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
18 metdscnlem.5 . . 3 (𝜑𝑅 ∈ ℝ+)
1918rpxrd 12996 . 2 (𝜑𝑅 ∈ ℝ*)
203metdstri 24740 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
211, 2, 6, 10, 20syl22anc 838 . . 3 (𝜑 → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
22 elxrge0 13418 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2322simprbi 496 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
247, 23syl 17 . . . 4 (𝜑 → 0 ≤ (𝐹𝐴))
25 elxrge0 13418 . . . . . . 7 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
2625simprbi 496 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
2711, 26syl 17 . . . . 5 (𝜑 → 0 ≤ (𝐹𝐵))
28 ge0nemnf 13133 . . . . 5 (((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)) → (𝐹𝐵) ≠ -∞)
2913, 27, 28syl2anc 584 . . . 4 (𝜑 → (𝐹𝐵) ≠ -∞)
30 xmetge0 24232 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
311, 6, 10, 30syl3anc 1373 . . . 4 (𝜑 → 0 ≤ (𝐴𝐷𝐵))
32 xlesubadd 13223 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐹𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
339, 13, 17, 24, 29, 31, 32syl33anc 1387 . . 3 (𝜑 → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3421, 33mpbird 257 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵))
35 metdscnlem.6 . 2 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
3615, 17, 19, 34, 35xrlelttrd 13120 1 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wss 3914   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  +crp 12951  -𝑒cxne 13069   +𝑒 cxad 13070  [,]cicc 13309  distcds 17229  *𝑠cxrs 17463  ∞Metcxmet 21249  MetOpencmopn 21254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-ec 8673  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  metdscn  24745
  Copyright terms: Public domain W3C validator