![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdscnlem | Structured version Visualization version GIF version |
Description: Lemma for metdscn 22987. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn.c | ⊢ 𝐶 = (dist‘ℝ*𝑠) |
metdscn.k | ⊢ 𝐾 = (MetOpen‘𝐶) |
metdscnlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metdscnlem.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
metdscnlem.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
metdscnlem.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
metdscnlem.5 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metdscnlem.6 | ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) |
Ref | Expression |
---|---|
metdscnlem | ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscnlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | metdscnlem.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
3 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 22979 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 1, 2, 4 | syl2anc 580 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
6 | metdscnlem.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 5, 6 | ffvelrnd 6586 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
8 | elxrge0 12532 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐴))) | |
9 | 8 | simplbi 492 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈ ℝ*) |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ*) |
11 | metdscnlem.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
12 | 5, 11 | ffvelrnd 6586 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (0[,]+∞)) |
13 | elxrge0 12532 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) ↔ ((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵))) | |
14 | 13 | simplbi 492 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ*) |
16 | 15 | xnegcld 12379 | . . 3 ⊢ (𝜑 → -𝑒(𝐹‘𝐵) ∈ ℝ*) |
17 | 10, 16 | xaddcld 12380 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ∈ ℝ*) |
18 | xmetcl 22464 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
19 | 1, 6, 11, 18 | syl3anc 1491 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*) |
20 | metdscnlem.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
21 | 20 | rpxrd 12118 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
22 | 3 | metdstri 22982 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
23 | 1, 2, 6, 11, 22 | syl22anc 868 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
24 | 8 | simprbi 491 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
26 | 13 | simprbi 491 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐵)) |
27 | 12, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐵)) |
28 | ge0nemnf 12253 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵)) → (𝐹‘𝐵) ≠ -∞) | |
29 | 15, 27, 28 | syl2anc 580 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ≠ -∞) |
30 | xmetge0 22477 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
31 | 1, 6, 11, 30 | syl3anc 1491 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴𝐷𝐵)) |
32 | xlesubadd 12342 | . . . 4 ⊢ ((((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) | |
33 | 10, 15, 19, 25, 29, 31, 32 | syl33anc 1505 | . . 3 ⊢ (𝜑 → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) |
34 | 23, 33 | mpbird 249 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
35 | metdscnlem.6 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) | |
36 | 17, 19, 21, 34, 35 | xrlelttrd 12240 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ⊆ wss 3769 class class class wbr 4843 ↦ cmpt 4922 ran crn 5313 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 infcinf 8589 0cc0 10224 +∞cpnf 10360 -∞cmnf 10361 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 ℝ+crp 12074 -𝑒cxne 12190 +𝑒 cxad 12191 [,]cicc 12427 distcds 16276 ℝ*𝑠cxrs 16475 ∞Metcxmet 20053 MetOpencmopn 20058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-er 7982 df-ec 7984 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-2 11376 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-icc 12431 df-psmet 20060 df-xmet 20061 df-bl 20063 |
This theorem is referenced by: metdscn 22987 |
Copyright terms: Public domain | W3C validator |