Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metdscnlem | Structured version Visualization version GIF version |
Description: Lemma for metdscn 23753. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn.c | ⊢ 𝐶 = (dist‘ℝ*𝑠) |
metdscn.k | ⊢ 𝐾 = (MetOpen‘𝐶) |
metdscnlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metdscnlem.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
metdscnlem.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
metdscnlem.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
metdscnlem.5 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metdscnlem.6 | ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) |
Ref | Expression |
---|---|
metdscnlem | ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscnlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | metdscnlem.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
3 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 23745 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 1, 2, 4 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
6 | metdscnlem.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 5, 6 | ffvelrnd 6905 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
8 | eliccxr 13023 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈ ℝ*) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ*) |
10 | metdscnlem.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
11 | 5, 10 | ffvelrnd 6905 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (0[,]+∞)) |
12 | eliccxr 13023 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ*) |
14 | 13 | xnegcld 12890 | . . 3 ⊢ (𝜑 → -𝑒(𝐹‘𝐵) ∈ ℝ*) |
15 | 9, 14 | xaddcld 12891 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ∈ ℝ*) |
16 | xmetcl 23229 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
17 | 1, 6, 10, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*) |
18 | metdscnlem.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
19 | 18 | rpxrd 12629 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
20 | 3 | metdstri 23748 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
21 | 1, 2, 6, 10, 20 | syl22anc 839 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
22 | elxrge0 13045 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐴))) | |
23 | 22 | simprbi 500 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
25 | elxrge0 13045 | . . . . . . 7 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) ↔ ((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵))) | |
26 | 25 | simprbi 500 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐵)) |
27 | 11, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐵)) |
28 | ge0nemnf 12763 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵)) → (𝐹‘𝐵) ≠ -∞) | |
29 | 13, 27, 28 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ≠ -∞) |
30 | xmetge0 23242 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
31 | 1, 6, 10, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴𝐷𝐵)) |
32 | xlesubadd 12853 | . . . 4 ⊢ ((((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) | |
33 | 9, 13, 17, 24, 29, 31, 32 | syl33anc 1387 | . . 3 ⊢ (𝜑 → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) |
34 | 21, 33 | mpbird 260 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
35 | metdscnlem.6 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) | |
36 | 15, 17, 19, 34, 35 | xrlelttrd 12750 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ⊆ wss 3866 class class class wbr 5053 ↦ cmpt 5135 ran crn 5552 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 infcinf 9057 0cc0 10729 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 ℝ+crp 12586 -𝑒cxne 12701 +𝑒 cxad 12702 [,]cicc 12938 distcds 16811 ℝ*𝑠cxrs 17005 ∞Metcxmet 20348 MetOpencmopn 20353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-ec 8393 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-icc 12942 df-psmet 20355 df-xmet 20356 df-bl 20358 |
This theorem is referenced by: metdscn 23753 |
Copyright terms: Public domain | W3C validator |