Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metdscnlem | Structured version Visualization version GIF version |
Description: Lemma for metdscn 23925. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn.c | ⊢ 𝐶 = (dist‘ℝ*𝑠) |
metdscn.k | ⊢ 𝐾 = (MetOpen‘𝐶) |
metdscnlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
metdscnlem.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
metdscnlem.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
metdscnlem.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
metdscnlem.5 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metdscnlem.6 | ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) |
Ref | Expression |
---|---|
metdscnlem | ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscnlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | metdscnlem.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
3 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
4 | 3 | metdsf 23917 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
5 | 1, 2, 4 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
6 | metdscnlem.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
7 | 5, 6 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
8 | eliccxr 13096 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈ ℝ*) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ*) |
10 | metdscnlem.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
11 | 5, 10 | ffvelrnd 6944 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (0[,]+∞)) |
12 | eliccxr 13096 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ*) |
14 | 13 | xnegcld 12963 | . . 3 ⊢ (𝜑 → -𝑒(𝐹‘𝐵) ∈ ℝ*) |
15 | 9, 14 | xaddcld 12964 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ∈ ℝ*) |
16 | xmetcl 23392 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
17 | 1, 6, 10, 16 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*) |
18 | metdscnlem.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
19 | 18 | rpxrd 12702 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
20 | 3 | metdstri 23920 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
21 | 1, 2, 6, 10, 20 | syl22anc 835 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
22 | elxrge0 13118 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐴))) | |
23 | 22 | simprbi 496 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
25 | elxrge0 13118 | . . . . . . 7 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) ↔ ((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵))) | |
26 | 25 | simprbi 496 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐵)) |
27 | 11, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐵)) |
28 | ge0nemnf 12836 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵)) → (𝐹‘𝐵) ≠ -∞) | |
29 | 13, 27, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ≠ -∞) |
30 | xmetge0 23405 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
31 | 1, 6, 10, 30 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴𝐷𝐵)) |
32 | xlesubadd 12926 | . . . 4 ⊢ ((((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) | |
33 | 9, 13, 17, 24, 29, 31, 32 | syl33anc 1383 | . . 3 ⊢ (𝜑 → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) |
34 | 21, 33 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
35 | metdscnlem.6 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) | |
36 | 15, 17, 19, 34, 35 | xrlelttrd 12823 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 infcinf 9130 0cc0 10802 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℝ+crp 12659 -𝑒cxne 12774 +𝑒 cxad 12775 [,]cicc 13011 distcds 16897 ℝ*𝑠cxrs 17128 ∞Metcxmet 20495 MetOpencmopn 20500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-ec 8458 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-psmet 20502 df-xmet 20503 df-bl 20505 |
This theorem is referenced by: metdscn 23925 |
Copyright terms: Public domain | W3C validator |