| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdscnlem | Structured version Visualization version GIF version | ||
| Description: Lemma for metdscn 24801. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| metdscn.c | ⊢ 𝐶 = (dist‘ℝ*𝑠) |
| metdscn.k | ⊢ 𝐾 = (MetOpen‘𝐶) |
| metdscnlem.1 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| metdscnlem.2 | ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| metdscnlem.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| metdscnlem.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| metdscnlem.5 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| metdscnlem.6 | ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) |
| Ref | Expression |
|---|---|
| metdscnlem | ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscnlem.1 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | metdscnlem.2 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) | |
| 3 | metdscn.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 4 | 3 | metdsf 24793 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | 1, 2, 4 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 6 | metdscnlem.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 7 | 5, 6 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
| 8 | eliccxr 13457 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → (𝐹‘𝐴) ∈ ℝ*) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ*) |
| 10 | metdscnlem.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 11 | 5, 10 | ffvelcdmd 7080 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (0[,]+∞)) |
| 12 | eliccxr 13457 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → (𝐹‘𝐵) ∈ ℝ*) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ*) |
| 14 | 13 | xnegcld 13321 | . . 3 ⊢ (𝜑 → -𝑒(𝐹‘𝐵) ∈ ℝ*) |
| 15 | 9, 14 | xaddcld 13322 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ∈ ℝ*) |
| 16 | xmetcl 24275 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
| 17 | 1, 6, 10, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*) |
| 18 | metdscnlem.5 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 19 | 18 | rpxrd 13057 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| 20 | 3 | metdstri 24796 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
| 21 | 1, 2, 6, 10, 20 | syl22anc 838 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) |
| 22 | elxrge0 13479 | . . . . . 6 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) ↔ ((𝐹‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐴))) | |
| 23 | 22 | simprbi 496 | . . . . 5 ⊢ ((𝐹‘𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐴)) |
| 24 | 7, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
| 25 | elxrge0 13479 | . . . . . . 7 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) ↔ ((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵))) | |
| 26 | 25 | simprbi 496 | . . . . . 6 ⊢ ((𝐹‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹‘𝐵)) |
| 27 | 11, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → 0 ≤ (𝐹‘𝐵)) |
| 28 | ge0nemnf 13194 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹‘𝐵)) → (𝐹‘𝐵) ≠ -∞) | |
| 29 | 13, 27, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ≠ -∞) |
| 30 | xmetge0 24288 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
| 31 | 1, 6, 10, 30 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝐴𝐷𝐵)) |
| 32 | xlesubadd 13284 | . . . 4 ⊢ ((((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) | |
| 33 | 9, 13, 17, 24, 29, 31, 32 | syl33anc 1387 | . . 3 ⊢ (𝜑 → (((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵)))) |
| 34 | 21, 33 | mpbird 257 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) |
| 35 | metdscnlem.6 | . 2 ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) | |
| 36 | 15, 17, 19, 34, 35 | xrlelttrd 13181 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 infcinf 9458 0cc0 11134 +∞cpnf 11271 -∞cmnf 11272 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 ℝ+crp 13013 -𝑒cxne 13130 +𝑒 cxad 13131 [,]cicc 13370 distcds 17285 ℝ*𝑠cxrs 17519 ∞Metcxmet 21305 MetOpencmopn 21310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-ec 8726 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-2 12308 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-psmet 21312 df-xmet 21313 df-bl 21315 |
| This theorem is referenced by: metdscn 24801 |
| Copyright terms: Public domain | W3C validator |