MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   GIF version

Theorem metdscnlem 23462
Description: Lemma for metdscn 23463. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
metdscnlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metdscnlem.2 (𝜑𝑆𝑋)
metdscnlem.3 (𝜑𝐴𝑋)
metdscnlem.4 (𝜑𝐵𝑋)
metdscnlem.5 (𝜑𝑅 ∈ ℝ+)
metdscnlem.6 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
Assertion
Ref Expression
metdscnlem (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metdscnlem.2 . . . . . 6 (𝜑𝑆𝑋)
3 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 23455 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
51, 2, 4syl2anc 586 . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
6 metdscnlem.3 . . . . 5 (𝜑𝐴𝑋)
75, 6ffvelrnd 6851 . . . 4 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
8 eliccxr 12822 . . . 4 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
97, 8syl 17 . . 3 (𝜑 → (𝐹𝐴) ∈ ℝ*)
10 metdscnlem.4 . . . . . 6 (𝜑𝐵𝑋)
115, 10ffvelrnd 6851 . . . . 5 (𝜑 → (𝐹𝐵) ∈ (0[,]+∞))
12 eliccxr 12822 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
1311, 12syl 17 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ*)
1413xnegcld 12692 . . 3 (𝜑 → -𝑒(𝐹𝐵) ∈ ℝ*)
159, 14xaddcld 12693 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ∈ ℝ*)
16 xmetcl 22940 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
171, 6, 10, 16syl3anc 1367 . 2 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
18 metdscnlem.5 . . 3 (𝜑𝑅 ∈ ℝ+)
1918rpxrd 12431 . 2 (𝜑𝑅 ∈ ℝ*)
203metdstri 23458 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
211, 2, 6, 10, 20syl22anc 836 . . 3 (𝜑 → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
22 elxrge0 12844 . . . . . 6 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
2322simprbi 499 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
247, 23syl 17 . . . 4 (𝜑 → 0 ≤ (𝐹𝐴))
25 elxrge0 12844 . . . . . . 7 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
2625simprbi 499 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
2711, 26syl 17 . . . . 5 (𝜑 → 0 ≤ (𝐹𝐵))
28 ge0nemnf 12565 . . . . 5 (((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)) → (𝐹𝐵) ≠ -∞)
2913, 27, 28syl2anc 586 . . . 4 (𝜑 → (𝐹𝐵) ≠ -∞)
30 xmetge0 22953 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
311, 6, 10, 30syl3anc 1367 . . . 4 (𝜑 → 0 ≤ (𝐴𝐷𝐵))
32 xlesubadd 12655 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐹𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
339, 13, 17, 24, 29, 31, 32syl33anc 1381 . . 3 (𝜑 → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3421, 33mpbird 259 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵))
35 metdscnlem.6 . 2 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
3615, 17, 19, 34, 35xrlelttrd 12552 1 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wne 3016  wss 3935   class class class wbr 5065  cmpt 5145  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7155  infcinf 8904  0cc0 10536  +∞cpnf 10671  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675  +crp 12388  -𝑒cxne 12503   +𝑒 cxad 12504  [,]cicc 12740  distcds 16573  *𝑠cxrs 16772  ∞Metcxmet 20529  MetOpencmopn 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-er 8288  df-ec 8290  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-2 11699  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-psmet 20536  df-xmet 20537  df-bl 20539
This theorem is referenced by:  metdscn  23463
  Copyright terms: Public domain W3C validator