MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscnlem Structured version   Visualization version   GIF version

Theorem metdscnlem 22986
Description: Lemma for metdscn 22987. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
metdscnlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metdscnlem.2 (𝜑𝑆𝑋)
metdscnlem.3 (𝜑𝐴𝑋)
metdscnlem.4 (𝜑𝐵𝑋)
metdscnlem.5 (𝜑𝑅 ∈ ℝ+)
metdscnlem.6 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
Assertion
Ref Expression
metdscnlem (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑦,𝐽   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscnlem
StepHypRef Expression
1 metdscnlem.1 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metdscnlem.2 . . . . . 6 (𝜑𝑆𝑋)
3 metdscn.f . . . . . . 7 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
43metdsf 22979 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
51, 2, 4syl2anc 580 . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
6 metdscnlem.3 . . . . 5 (𝜑𝐴𝑋)
75, 6ffvelrnd 6586 . . . 4 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
8 elxrge0 12532 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) ↔ ((𝐹𝐴) ∈ ℝ* ∧ 0 ≤ (𝐹𝐴)))
98simplbi 492 . . . 4 ((𝐹𝐴) ∈ (0[,]+∞) → (𝐹𝐴) ∈ ℝ*)
107, 9syl 17 . . 3 (𝜑 → (𝐹𝐴) ∈ ℝ*)
11 metdscnlem.4 . . . . . 6 (𝜑𝐵𝑋)
125, 11ffvelrnd 6586 . . . . 5 (𝜑 → (𝐹𝐵) ∈ (0[,]+∞))
13 elxrge0 12532 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) ↔ ((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)))
1413simplbi 492 . . . . 5 ((𝐹𝐵) ∈ (0[,]+∞) → (𝐹𝐵) ∈ ℝ*)
1512, 14syl 17 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ*)
1615xnegcld 12379 . . 3 (𝜑 → -𝑒(𝐹𝐵) ∈ ℝ*)
1710, 16xaddcld 12380 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ∈ ℝ*)
18 xmetcl 22464 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
191, 6, 11, 18syl3anc 1491 . 2 (𝜑 → (𝐴𝐷𝐵) ∈ ℝ*)
20 metdscnlem.5 . . 3 (𝜑𝑅 ∈ ℝ+)
2120rpxrd 12118 . 2 (𝜑𝑅 ∈ ℝ*)
223metdstri 22982 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
231, 2, 6, 11, 22syl22anc 868 . . 3 (𝜑 → (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵)))
248simprbi 491 . . . . 5 ((𝐹𝐴) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐴))
257, 24syl 17 . . . 4 (𝜑 → 0 ≤ (𝐹𝐴))
2613simprbi 491 . . . . . 6 ((𝐹𝐵) ∈ (0[,]+∞) → 0 ≤ (𝐹𝐵))
2712, 26syl 17 . . . . 5 (𝜑 → 0 ≤ (𝐹𝐵))
28 ge0nemnf 12253 . . . . 5 (((𝐹𝐵) ∈ ℝ* ∧ 0 ≤ (𝐹𝐵)) → (𝐹𝐵) ≠ -∞)
2915, 27, 28syl2anc 580 . . . 4 (𝜑 → (𝐹𝐵) ≠ -∞)
30 xmetge0 22477 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
311, 6, 11, 30syl3anc 1491 . . . 4 (𝜑 → 0 ≤ (𝐴𝐷𝐵))
32 xlesubadd 12342 . . . 4 ((((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ* ∧ (𝐴𝐷𝐵) ∈ ℝ*) ∧ (0 ≤ (𝐹𝐴) ∧ (𝐹𝐵) ≠ -∞ ∧ 0 ≤ (𝐴𝐷𝐵))) → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3310, 15, 19, 25, 29, 31, 32syl33anc 1505 . . 3 (𝜑 → (((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵) ↔ (𝐹𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹𝐵))))
3423, 33mpbird 249 . 2 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) ≤ (𝐴𝐷𝐵))
35 metdscnlem.6 . 2 (𝜑 → (𝐴𝐷𝐵) < 𝑅)
3617, 19, 21, 34, 35xrlelttrd 12240 1 (𝜑 → ((𝐹𝐴) +𝑒 -𝑒(𝐹𝐵)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wne 2971  wss 3769   class class class wbr 4843  cmpt 4922  ran crn 5313  wf 6097  cfv 6101  (class class class)co 6878  infcinf 8589  0cc0 10224  +∞cpnf 10360  -∞cmnf 10361  *cxr 10362   < clt 10363  cle 10364  +crp 12074  -𝑒cxne 12190   +𝑒 cxad 12191  [,]cicc 12427  distcds 16276  *𝑠cxrs 16475  ∞Metcxmet 20053  MetOpencmopn 20058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-ec 7984  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-2 11376  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-psmet 20060  df-xmet 20061  df-bl 20063
This theorem is referenced by:  metdscn  22987
  Copyright terms: Public domain W3C validator