| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bl2in | Structured version Visualization version GIF version | ||
| Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| bl2in | ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (Met‘𝑋)) | |
| 2 | metxmet 24247 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | simpl2 1193 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑃 ∈ 𝑋) | |
| 5 | simpl3 1194 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑄 ∈ 𝑋) | |
| 6 | rexr 11155 | . . 3 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*) | |
| 7 | 6 | ad2antrl 728 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ*) |
| 8 | simprl 770 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ) | |
| 9 | 8, 8 | rexaddd 13130 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅)) |
| 10 | 8 | recnd 11137 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℂ) |
| 11 | 10 | 2timesd 12361 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) = (𝑅 + 𝑅)) |
| 12 | 9, 11 | eqtr4d 2769 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (2 · 𝑅)) |
| 13 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℝ) | |
| 14 | metcl 24245 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐷𝑄) ∈ ℝ) | |
| 15 | 2re 12196 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 16 | 2pos 12225 | . . . . . . . 8 ⊢ 0 < 2 | |
| 17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 18 | lemuldiv2 12000 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) | |
| 19 | 17, 18 | mp3an3 1452 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) |
| 20 | 13, 14, 19 | syl2anr 597 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) |
| 21 | 20 | biimprd 248 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ ((𝑃𝐷𝑄) / 2) → (2 · 𝑅) ≤ (𝑃𝐷𝑄))) |
| 22 | 21 | impr 454 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) ≤ (𝑃𝐷𝑄)) |
| 23 | 12, 22 | eqbrtrd 5113 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄)) |
| 24 | bldisj 24311 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) | |
| 25 | 3, 4, 5, 7, 7, 23, 24 | syl33anc 1387 | 1 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 + caddc 11006 · cmul 11008 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 / cdiv 11771 2c2 12177 +𝑒 cxad 13006 ∞Metcxmet 21274 Metcmet 21275 ballcbl 21276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-2 12185 df-xneg 13008 df-xadd 13009 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |