![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bl2in | Structured version Visualization version GIF version |
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
bl2in | ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (Met‘𝑋)) | |
2 | metxmet 24365 | . . 3 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | simpl2 1192 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑃 ∈ 𝑋) | |
5 | simpl3 1193 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑄 ∈ 𝑋) | |
6 | rexr 11336 | . . 3 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*) | |
7 | 6 | ad2antrl 727 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ*) |
8 | simprl 770 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ) | |
9 | 8, 8 | rexaddd 13296 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅)) |
10 | 8 | recnd 11318 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℂ) |
11 | 10 | 2timesd 12536 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) = (𝑅 + 𝑅)) |
12 | 9, 11 | eqtr4d 2783 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (2 · 𝑅)) |
13 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ ℝ → 𝑅 ∈ ℝ) | |
14 | metcl 24363 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝑃𝐷𝑄) ∈ ℝ) | |
15 | 2re 12367 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
16 | 2pos 12396 | . . . . . . . 8 ⊢ 0 < 2 | |
17 | 15, 16 | pm3.2i 470 | . . . . . . 7 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
18 | lemuldiv2 12176 | . . . . . . 7 ⊢ ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) | |
19 | 17, 18 | mp3an3 1450 | . . . . . 6 ⊢ ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) |
20 | 13, 14, 19 | syl2anr 596 | . . . . 5 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) |
21 | 20 | biimprd 248 | . . . 4 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ ((𝑃𝐷𝑄) / 2) → (2 · 𝑅) ≤ (𝑃𝐷𝑄))) |
22 | 21 | impr 454 | . . 3 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) ≤ (𝑃𝐷𝑄)) |
23 | 12, 22 | eqbrtrd 5188 | . 2 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄)) |
24 | bldisj 24429 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) | |
25 | 3, 4, 5, 7, 7, 23, 24 | syl33anc 1385 | 1 ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 · cmul 11189 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 / cdiv 11947 2c2 12348 +𝑒 cxad 13173 ∞Metcxmet 21372 Metcmet 21373 ballcbl 21374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-xneg 13175 df-xadd 13176 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |