Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bl2in Structured version   Visualization version   GIF version

Theorem bl2in 23002
 Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1185 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22936 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1186 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑃𝑋)
5 simpl3 1187 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑄𝑋)
6 rexr 10679 . . 3 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
76ad2antrl 726 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ*)
8 simprl 769 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ)
98, 8rexaddd 12619 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
108recnd 10661 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℂ)
11102timesd 11872 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) = (𝑅 + 𝑅))
129, 11eqtr4d 2857 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (2 · 𝑅))
13 id 22 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
14 metcl 22934 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ)
15 2re 11703 . . . . . . . 8 2 ∈ ℝ
16 2pos 11732 . . . . . . . 8 0 < 2
1715, 16pm3.2i 473 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
18 lemuldiv2 11513 . . . . . . 7 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
1917, 18mp3an3 1443 . . . . . 6 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2013, 14, 19syl2anr 598 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2120biimprd 250 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ ((𝑃𝐷𝑄) / 2) → (2 · 𝑅) ≤ (𝑃𝐷𝑄)))
2221impr 457 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) ≤ (𝑃𝐷𝑄))
2312, 22eqbrtrd 5079 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))
24 bldisj 23000 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
253, 4, 5, 7, 7, 23, 24syl33anc 1379 1 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ∩ cin 3933  ∅c0 4289   class class class wbr 5057  ‘cfv 6348  (class class class)co 7148  ℝcr 10528  0cc0 10529   + caddc 10532   · cmul 10534  ℝ*cxr 10666   < clt 10667   ≤ cle 10668   / cdiv 11289  2c2 11684   +𝑒 cxad 12497  ∞Metcxmet 20522  Metcmet 20523  ballcbl 20524 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-xneg 12499  df-xadd 12500  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator