MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blss Structured version   Visualization version   GIF version

Theorem blss 24152
Description: Any point 𝑃 in a ball 𝐡 can be centered in another ball that is a subset of 𝐡. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐷   π‘₯,𝑃   π‘₯,𝑋

Proof of Theorem blss
Dummy variables π‘Ÿ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 24136 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ)))
2 elbl 24115 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ)))
3 simpl1 1190 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 simpl2 1191 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑦 ∈ 𝑋)
5 simpr 484 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
6 xmetcl 24058 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1370 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 1192 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ π‘Ÿ ∈ ℝ*)
9 qbtwnxr 13184 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ* ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))
1093expia 1120 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
117, 8, 10syl2anc 583 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
12 qre 12942 . . . . . . . . . . 11 (𝑧 ∈ β„š β†’ 𝑧 ∈ ℝ)
13 simpll1 1211 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
14 simplr 766 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑃 ∈ 𝑋)
15 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑦 ∈ 𝑋)
16 xmetsym 24074 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 778 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 5170 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) < 𝑧)
20 simprl 768 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ)
21 xmetcl 24058 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 11265 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ β†’ 𝑧 ∈ ℝ*)
2423ad2antrl 725 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 13134 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ 𝑧)
26 xmetlecl 24073 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ 𝑧)) β†’ (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1378 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 13017 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 231 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 11647 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 13136 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑃𝐷𝑦))
3320recnd 11247 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ β„‚)
3427recnd 11247 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ β„‚)
3533, 34nncand 11581 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 5176 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))
37 blss2 24131 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1384 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
39 simpll3 1213 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ π‘Ÿ ∈ ℝ*)
40 simprrr 779 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 < π‘Ÿ)
4124, 39, 40xrltled 13134 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ≀ π‘Ÿ)
42 ssbl 24150 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑧 ≀ π‘Ÿ) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4313, 15, 24, 39, 41, 42syl221anc 1380 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4438, 43sstrd 3992 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
45 oveq2 7420 . . . . . . . . . . . . . . 15 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ (𝑃(ballβ€˜π·)π‘₯) = (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))))
4645sseq1d 4013 . . . . . . . . . . . . . 14 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
4746rspcev 3612 . . . . . . . . . . . . 13 (((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4830, 44, 47syl2anc 583 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4948expr 456 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ ℝ) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5012, 49sylan2 592 . . . . . . . . . 10 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ β„š) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5150rexlimdva 3154 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5211, 51syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5352expimpd 453 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
542, 53sylbid 239 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
55 eleq2 2821 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 ↔ 𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ)))
56 sseq2 4008 . . . . . . . 8 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5756rexbidv 3177 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5855, 57imbi12d 344 . . . . . 6 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡) ↔ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))))
5954, 58syl5ibrcom 246 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
60593expib 1121 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡))))
6160rexlimdvv 3209 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
621, 61sylbid 239 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
63623imp 1110 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069   βŠ† wss 3948   class class class wbr 5148  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  β„cr 11113  β„*cxr 11252   < clt 11253   ≀ cle 11254   βˆ’ cmin 11449  β„šcq 12937  β„+crp 12979  βˆžMetcxmet 21130  ballcbl 21132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-psmet 21137  df-xmet 21138  df-bl 21140
This theorem is referenced by:  blssex  24154  blin2  24156  metss  24238  metcnp3  24270
  Copyright terms: Public domain W3C validator