MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blss Structured version   Visualization version   GIF version

Theorem blss 23922
Description: Any point 𝑃 in a ball 𝐡 can be centered in another ball that is a subset of 𝐡. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐷   π‘₯,𝑃   π‘₯,𝑋

Proof of Theorem blss
Dummy variables π‘Ÿ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 23906 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) ↔ βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ)))
2 elbl 23885 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ)))
3 simpl1 1191 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 simpl2 1192 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑦 ∈ 𝑋)
5 simpr 485 . . . . . . . . . . 11 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
6 xmetcl 23828 . . . . . . . . . . 11 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1371 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 1193 . . . . . . . . . 10 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ π‘Ÿ ∈ ℝ*)
9 qbtwnxr 13175 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ* ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))
1093expia 1121 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
117, 8, 10syl2anc 584 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ)))
12 qre 12933 . . . . . . . . . . 11 (𝑧 ∈ β„š β†’ 𝑧 ∈ ℝ)
13 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
14 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑃 ∈ 𝑋)
15 simpll2 1213 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑦 ∈ 𝑋)
16 xmetsym 23844 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 779 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 5169 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) < 𝑧)
20 simprl 769 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ)
21 xmetcl 23828 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 11256 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ β†’ 𝑧 ∈ ℝ*)
2423ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 13125 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ 𝑧)
26 xmetlecl 23843 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ 𝑧)) β†’ (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1379 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 13008 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 231 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 11638 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 13127 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑃𝐷𝑦))
3320recnd 11238 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ∈ β„‚)
3427recnd 11238 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ∈ β„‚)
3533, 34nncand 11572 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 5175 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))
37 blss2 23901 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ ((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≀ (𝑧 βˆ’ (𝑧 βˆ’ (𝑃𝐷𝑦))))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1385 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)𝑧))
39 simpll3 1214 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ π‘Ÿ ∈ ℝ*)
40 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 < π‘Ÿ)
4124, 39, 40xrltled 13125 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ 𝑧 ≀ π‘Ÿ)
42 ssbl 23920 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋) ∧ (𝑧 ∈ ℝ* ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑧 ≀ π‘Ÿ) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4313, 15, 24, 39, 41, 42syl221anc 1381 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑦(ballβ€˜π·)𝑧) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4438, 43sstrd 3991 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
45 oveq2 7413 . . . . . . . . . . . . . . 15 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ (𝑃(ballβ€˜π·)π‘₯) = (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))))
4645sseq1d 4012 . . . . . . . . . . . . . 14 (π‘₯ = (𝑧 βˆ’ (𝑃𝐷𝑦)) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ) ↔ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
4746rspcev 3612 . . . . . . . . . . . . 13 (((𝑧 βˆ’ (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ballβ€˜π·)(𝑧 βˆ’ (𝑃𝐷𝑦))) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4830, 44, 47syl2anc 584 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ))) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))
4948expr 457 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ ℝ) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5012, 49sylan2 593 . . . . . . . . . 10 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) ∧ 𝑧 ∈ β„š) β†’ (((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5150rexlimdva 3155 . . . . . . . . 9 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ β„š ((𝑦𝐷𝑃) < 𝑧 ∧ 𝑧 < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5211, 51syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) ∧ 𝑃 ∈ 𝑋) β†’ ((𝑦𝐷𝑃) < π‘Ÿ β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5352expimpd 454 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ ((𝑃 ∈ 𝑋 ∧ (𝑦𝐷𝑃) < π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
542, 53sylbid 239 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
55 eleq2 2822 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 ↔ 𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ)))
56 sseq2 4007 . . . . . . . 8 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5756rexbidv 3178 . . . . . . 7 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡 ↔ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ)))
5855, 57imbi12d 344 . . . . . 6 (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ ((𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡) ↔ (𝑃 ∈ (𝑦(ballβ€˜π·)π‘Ÿ) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† (𝑦(ballβ€˜π·)π‘Ÿ))))
5954, 58syl5ibrcom 246 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
60593expib 1122 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ((𝑦 ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡))))
6160rexlimdvv 3210 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (βˆƒπ‘¦ ∈ 𝑋 βˆƒπ‘Ÿ ∈ ℝ* 𝐡 = (𝑦(ballβ€˜π·)π‘Ÿ) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
621, 61sylbid 239 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐡 ∈ ran (ballβ€˜π·) β†’ (𝑃 ∈ 𝐡 β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)))
63623imp 1111 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ ran (ballβ€˜π·) ∧ 𝑃 ∈ 𝐡) β†’ βˆƒπ‘₯ ∈ ℝ+ (𝑃(ballβ€˜π·)π‘₯) βŠ† 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   βŠ† wss 3947   class class class wbr 5147  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  β„šcq 12928  β„+crp 12970  βˆžMetcxmet 20921  ballcbl 20923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-psmet 20928  df-xmet 20929  df-bl 20931
This theorem is referenced by:  blssex  23924  blin2  23926  metss  24008  metcnp3  24040
  Copyright terms: Public domain W3C validator