MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blss Structured version   Visualization version   GIF version

Theorem blss 23178
Description: Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
blss ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝑃   𝑥,𝑋

Proof of Theorem blss
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrn 23162 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) ↔ ∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟)))
2 elbl 23141 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟)))
3 simpl1 1192 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1193 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑦𝑋)
5 simpr 488 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑃𝑋)
6 xmetcl 23084 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
73, 4, 5, 6syl3anc 1372 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (𝑦𝐷𝑃) ∈ ℝ*)
8 simpl3 1194 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → 𝑟 ∈ ℝ*)
9 qbtwnxr 12676 . . . . . . . . . . 11 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ* ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))
1093expia 1122 . . . . . . . . . 10 (((𝑦𝐷𝑃) ∈ ℝ*𝑟 ∈ ℝ*) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
117, 8, 10syl2anc 587 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟)))
12 qre 12435 . . . . . . . . . . 11 (𝑧 ∈ ℚ → 𝑧 ∈ ℝ)
13 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝐷 ∈ (∞Met‘𝑋))
14 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑃𝑋)
15 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑦𝑋)
16 xmetsym 23100 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
1713, 14, 15, 16syl3anc 1372 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) = (𝑦𝐷𝑃))
18 simprrl 781 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦𝐷𝑃) < 𝑧)
1917, 18eqbrtrd 5052 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) < 𝑧)
20 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ)
21 xmetcl 23084 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) → (𝑃𝐷𝑦) ∈ ℝ*)
2213, 14, 15, 21syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ*)
23 rexr 10765 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
2423ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℝ*)
2522, 24, 19xrltled 12626 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ 𝑧)
26 xmetlecl 23099 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑦𝑋) ∧ (𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ 𝑧)) → (𝑃𝐷𝑦) ∈ ℝ)
2713, 14, 15, 20, 25, 26syl122anc 1380 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℝ)
28 difrp 12510 . . . . . . . . . . . . . . 15 (((𝑃𝐷𝑦) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
2927, 20, 28syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ((𝑃𝐷𝑦) < 𝑧 ↔ (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+))
3019, 29mpbid 235 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+)
3120, 27resubcld 11146 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑃𝐷𝑦)) ∈ ℝ)
3222xrleidd 12628 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑃𝐷𝑦))
3320recnd 10747 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 ∈ ℂ)
3427recnd 10747 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ∈ ℂ)
3533, 34nncand 11080 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑧 − (𝑧 − (𝑃𝐷𝑦))) = (𝑃𝐷𝑦))
3632, 35breqtrrd 5058 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))
37 blss2 23157 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑦𝑋) ∧ ((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑃𝐷𝑦) ≤ (𝑧 − (𝑧 − (𝑃𝐷𝑦))))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
3813, 14, 15, 31, 20, 36, 37syl33anc 1386 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑧))
39 simpll3 1215 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑟 ∈ ℝ*)
40 simprrr 782 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧 < 𝑟)
4124, 39, 40xrltled 12626 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → 𝑧𝑟)
42 ssbl 23176 . . . . . . . . . . . . . . 15 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑧 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑧𝑟) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4313, 15, 24, 39, 41, 42syl221anc 1382 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑦(ball‘𝐷)𝑧) ⊆ (𝑦(ball‘𝐷)𝑟))
4438, 43sstrd 3887 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟))
45 oveq2 7178 . . . . . . . . . . . . . . 15 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))))
4645sseq1d 3908 . . . . . . . . . . . . . 14 (𝑥 = (𝑧 − (𝑃𝐷𝑦)) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟) ↔ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)))
4746rspcev 3526 . . . . . . . . . . . . 13 (((𝑧 − (𝑃𝐷𝑦)) ∈ ℝ+ ∧ (𝑃(ball‘𝐷)(𝑧 − (𝑃𝐷𝑦))) ⊆ (𝑦(ball‘𝐷)𝑟)) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4830, 44, 47syl2anc 587 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ (𝑧 ∈ ℝ ∧ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))
4948expr 460 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℝ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5012, 49sylan2 596 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) ∧ 𝑧 ∈ ℚ) → (((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5150rexlimdva 3194 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → (∃𝑧 ∈ ℚ ((𝑦𝐷𝑃) < 𝑧𝑧 < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5211, 51syld 47 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) ∧ 𝑃𝑋) → ((𝑦𝐷𝑃) < 𝑟 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5352expimpd 457 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → ((𝑃𝑋 ∧ (𝑦𝐷𝑃) < 𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
542, 53sylbid 243 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
55 eleq2 2821 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵𝑃 ∈ (𝑦(ball‘𝐷)𝑟)))
56 sseq2 3903 . . . . . . . 8 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5756rexbidv 3207 . . . . . . 7 (𝐵 = (𝑦(ball‘𝐷)𝑟) → (∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵 ↔ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟)))
5855, 57imbi12d 348 . . . . . 6 (𝐵 = (𝑦(ball‘𝐷)𝑟) → ((𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵) ↔ (𝑃 ∈ (𝑦(ball‘𝐷)𝑟) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑦(ball‘𝐷)𝑟))))
5954, 58syl5ibrcom 250 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
60593expib 1123 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑦𝑋𝑟 ∈ ℝ*) → (𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵))))
6160rexlimdvv 3203 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ* 𝐵 = (𝑦(ball‘𝐷)𝑟) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
621, 61sylbid 243 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐵 ∈ ran (ball‘𝐷) → (𝑃𝐵 → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)))
63623imp 1112 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3054  wss 3843   class class class wbr 5030  ran crn 5526  cfv 6339  (class class class)co 7170  cr 10614  *cxr 10752   < clt 10753  cle 10754  cmin 10948  cq 12430  +crp 12472  ∞Metcxmet 20202  ballcbl 20204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-psmet 20209  df-xmet 20210  df-bl 20212
This theorem is referenced by:  blssex  23180  blin2  23182  metss  23261  metcnp3  23293
  Copyright terms: Public domain W3C validator