MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  methaus Structured version   Visualization version   GIF version

Theorem methaus 22604
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
methaus (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)

Proof of Theorem methaus
Dummy variables 𝑛 𝑑 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnex 22603 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
3 metxmet 22418 . . . . . . . . . 10 (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋))
43ad2antrr 717 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑑 ∈ (∞Met‘𝑋))
5 simplrl 795 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥𝑋)
6 metcl 22416 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑑𝑦) ∈ ℝ)
763expb 1149 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑑𝑦) ∈ ℝ)
87adantr 472 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ)
9 metgt0 22443 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1093expb 1149 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1110biimpa 468 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 0 < (𝑥𝑑𝑦))
128, 11elrpd 12067 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ+)
1312rphalfcld 12082 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ+)
1413rpxrd 12071 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ*)
15 eqid 2765 . . . . . . . . . 10 (MetOpen‘𝑑) = (MetOpen‘𝑑)
1615blopn 22584 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
174, 5, 14, 16syl3anc 1490 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
18 simplrr 796 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦𝑋)
1915blopn 22584 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
204, 18, 14, 19syl3anc 1490 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
21 blcntr 22497 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
224, 5, 13, 21syl3anc 1490 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
23 blcntr 22497 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
244, 18, 13, 23syl3anc 1490 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
2513rpred 12070 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ)
26 rexadd 12265 . . . . . . . . . . . 12 ((((𝑥𝑑𝑦) / 2) ∈ ℝ ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
2725, 25, 26syl2anc 579 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
288recnd 10322 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℂ)
29282halvesd 11524 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
3027, 29eqtrd 2799 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
318leidd 10848 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦))
3230, 31eqbrtrd 4831 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))
33 bldisj 22482 . . . . . . . . 9 (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
344, 5, 18, 14, 14, 32, 33syl33anc 1504 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
35 eleq2 2833 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥𝑚𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
36 ineq1 3969 . . . . . . . . . . 11 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛))
3736eqeq1d 2767 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))
3835, 373anbi13d 1562 . . . . . . . . 9 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)))
39 eleq2 2833 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦𝑛𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
40 ineq2 3970 . . . . . . . . . . 11 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
4140eqeq1d 2767 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))
4239, 413anbi23d 1563 . . . . . . . . 9 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)))
4338, 42rspc2ev 3476 . . . . . . . 8 (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4417, 20, 22, 24, 34, 43syl113anc 1501 . . . . . . 7 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4544ex 401 . . . . . 6 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4645ralrimivva 3118 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4715mopntopon 22523 . . . . . 6 (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋))
48 ishaus2 21435 . . . . . 6 ((MetOpen‘𝑑) ∈ (TopOn‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
493, 47, 483syl 18 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
5046, 49mpbird 248 . . . 4 (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus)
51 eleq1 2832 . . . 4 (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus))
5250, 51syl5ibrcom 238 . . 3 (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus))
5352rexlimiv 3174 . 2 (∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)
542, 53syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  cin 3731  c0 4079   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189   + caddc 10192  *cxr 10327   < clt 10328  cle 10329   / cdiv 10938  2c2 11327  +crp 12028   +𝑒 cxad 12144  ∞Metcxmet 20004  Metcmet 20005  ballcbl 20006  MetOpencmopn 20009  TopOnctopon 20994  Hauscha 21392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-icc 12384  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-haus 21399
This theorem is referenced by:  cnfldhaus  22867  rehaus  22881  metreg  22945  lmcau  23390  metsscmetcld  23392  minveclem4a  23490  minvecolem4a  28189  minvecolem4b  28190  minvecolem4  28192  hlimf  28550  hmopidmchi  29466  rrhcn  30488  rrexthaus  30498  sitmcl  30860  heiborlem9  34040  bfplem1  34043
  Copyright terms: Public domain W3C validator