MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  methaus Structured version   Visualization version   GIF version

Theorem methaus 23372
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
methaus (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)

Proof of Theorem methaus
Dummy variables 𝑛 𝑑 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnex 23371 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
3 metxmet 23186 . . . . . . . . . 10 (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋))
43ad2antrr 726 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑑 ∈ (∞Met‘𝑋))
5 simplrl 777 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥𝑋)
6 metcl 23184 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑑𝑦) ∈ ℝ)
763expb 1122 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑑𝑦) ∈ ℝ)
87adantr 484 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ)
9 metgt0 23211 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1093expb 1122 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1110biimpa 480 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 0 < (𝑥𝑑𝑦))
128, 11elrpd 12590 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ+)
1312rphalfcld 12605 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ+)
1413rpxrd 12594 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ*)
15 eqid 2736 . . . . . . . . . 10 (MetOpen‘𝑑) = (MetOpen‘𝑑)
1615blopn 23352 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
174, 5, 14, 16syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
18 simplrr 778 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦𝑋)
1915blopn 23352 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
204, 18, 14, 19syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
21 blcntr 23265 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
224, 5, 13, 21syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
23 blcntr 23265 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
244, 18, 13, 23syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
2513rpred 12593 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ)
2625, 25rexaddd 12789 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
278recnd 10826 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℂ)
28272halvesd 12041 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
2926, 28eqtrd 2771 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
308leidd 11363 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦))
3129, 30eqbrtrd 5061 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))
32 bldisj 23250 . . . . . . . . 9 (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
334, 5, 18, 14, 14, 31, 32syl33anc 1387 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
34 eleq2 2819 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥𝑚𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
35 ineq1 4106 . . . . . . . . . . 11 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛))
3635eqeq1d 2738 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))
3734, 363anbi13d 1440 . . . . . . . . 9 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)))
38 eleq2 2819 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦𝑛𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
39 ineq2 4107 . . . . . . . . . . 11 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
4039eqeq1d 2738 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))
4138, 403anbi23d 1441 . . . . . . . . 9 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)))
4237, 41rspc2ev 3539 . . . . . . . 8 (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4317, 20, 22, 24, 33, 42syl113anc 1384 . . . . . . 7 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4443ex 416 . . . . . 6 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4544ralrimivva 3102 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4615mopntopon 23291 . . . . . 6 (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋))
47 ishaus2 22202 . . . . . 6 ((MetOpen‘𝑑) ∈ (TopOn‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
483, 46, 473syl 18 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4945, 48mpbird 260 . . . 4 (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus)
50 eleq1 2818 . . . 4 (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus))
5149, 50syl5ibrcom 250 . . 3 (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus))
5251rexlimiv 3189 . 2 (∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)
532, 52syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  cin 3852  c0 4223   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694   + caddc 10697  *cxr 10831   < clt 10832  cle 10833   / cdiv 11454  2c2 11850  +crp 12551   +𝑒 cxad 12667  ∞Metcxmet 20302  Metcmet 20303  ballcbl 20304  MetOpencmopn 20307  TopOnctopon 21761  Hauscha 22159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-icc 12907  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-bases 21797  df-haus 22166
This theorem is referenced by:  cnfldhaus  23636  rehaus  23650  metreg  23714  lmcau  24164  metsscmetcld  24166  minveclem4a  24281  minvecolem4a  28912  minvecolem4b  28913  minvecolem4  28915  hlimf  29272  hmopidmchi  30186  rrhcn  31613  rrexthaus  31623  sitmcl  31984  heiborlem9  35663  bfplem1  35666
  Copyright terms: Public domain W3C validator