MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  methaus Structured version   Visualization version   GIF version

Theorem methaus 24415
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
methaus (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)

Proof of Theorem methaus
Dummy variables 𝑛 𝑑 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnex 24414 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
3 metxmet 24229 . . . . . . . . . 10 (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋))
43ad2antrr 726 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑑 ∈ (∞Met‘𝑋))
5 simplrl 776 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥𝑋)
6 metcl 24227 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑑𝑦) ∈ ℝ)
763expb 1120 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑑𝑦) ∈ ℝ)
87adantr 480 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ)
9 metgt0 24254 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1093expb 1120 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1110biimpa 476 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 0 < (𝑥𝑑𝑦))
128, 11elrpd 12999 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ+)
1312rphalfcld 13014 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ+)
1413rpxrd 13003 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ*)
15 eqid 2730 . . . . . . . . . 10 (MetOpen‘𝑑) = (MetOpen‘𝑑)
1615blopn 24395 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
174, 5, 14, 16syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
18 simplrr 777 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦𝑋)
1915blopn 24395 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
204, 18, 14, 19syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
21 blcntr 24308 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
224, 5, 13, 21syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
23 blcntr 24308 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
244, 18, 13, 23syl3anc 1373 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
2513rpred 13002 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ)
2625, 25rexaddd 13201 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
278recnd 11209 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℂ)
28272halvesd 12435 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
2926, 28eqtrd 2765 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
308leidd 11751 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦))
3129, 30eqbrtrd 5132 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))
32 bldisj 24293 . . . . . . . . 9 (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
334, 5, 18, 14, 14, 31, 32syl33anc 1387 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
34 eleq2 2818 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥𝑚𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
35 ineq1 4179 . . . . . . . . . . 11 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛))
3635eqeq1d 2732 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))
3734, 363anbi13d 1440 . . . . . . . . 9 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)))
38 eleq2 2818 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦𝑛𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
39 ineq2 4180 . . . . . . . . . . 11 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
4039eqeq1d 2732 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))
4138, 403anbi23d 1441 . . . . . . . . 9 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)))
4237, 41rspc2ev 3604 . . . . . . . 8 (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4317, 20, 22, 24, 33, 42syl113anc 1384 . . . . . . 7 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4443ex 412 . . . . . 6 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4544ralrimivva 3181 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4615mopntopon 24334 . . . . . 6 (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋))
47 ishaus2 23245 . . . . . 6 ((MetOpen‘𝑑) ∈ (TopOn‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
483, 46, 473syl 18 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4945, 48mpbird 257 . . . 4 (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus)
50 eleq1 2817 . . . 4 (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus))
5149, 50syl5ibrcom 247 . . 3 (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus))
5251rexlimiv 3128 . 2 (∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)
532, 52syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  2c2 12248  +crp 12958   +𝑒 cxad 13077  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258  MetOpencmopn 21261  TopOnctopon 22804  Hauscha 23202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-haus 23209
This theorem is referenced by:  cnfldhaus  24679  rehaus  24694  metreg  24759  lmcau  25220  metsscmetcld  25222  minveclem4a  25337  minvecolem4a  30813  minvecolem4b  30814  minvecolem4  30816  hlimf  31173  hmopidmchi  32087  rrhcn  33994  rrexthaus  34004  sitmcl  34349  heiborlem9  37820  bfplem1  37823
  Copyright terms: Public domain W3C validator