MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  methaus Structured version   Visualization version   GIF version

Theorem methaus 23057
Description: The topology generated by a metric space is Hausdorff. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
methaus (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)

Proof of Theorem methaus
Dummy variables 𝑛 𝑑 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnex 23056 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
3 metxmet 22871 . . . . . . . . . 10 (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋))
43ad2antrr 722 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑑 ∈ (∞Met‘𝑋))
5 simplrl 773 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥𝑋)
6 metcl 22869 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑑𝑦) ∈ ℝ)
763expb 1112 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑑𝑦) ∈ ℝ)
87adantr 481 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ)
9 metgt0 22896 . . . . . . . . . . . . . 14 ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1093expb 1112 . . . . . . . . . . . . 13 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 ↔ 0 < (𝑥𝑑𝑦)))
1110biimpa 477 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 0 < (𝑥𝑑𝑦))
128, 11elrpd 12416 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℝ+)
1312rphalfcld 12431 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ+)
1413rpxrd 12420 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ*)
15 eqid 2818 . . . . . . . . . 10 (MetOpen‘𝑑) = (MetOpen‘𝑑)
1615blopn 23037 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
174, 5, 14, 16syl3anc 1363 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
18 simplrr 774 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦𝑋)
1915blopn 23037 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
204, 18, 14, 19syl3anc 1363 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑))
21 blcntr 22950 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
224, 5, 13, 21syl3anc 1363 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
23 blcntr 22950 . . . . . . . . 9 ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
244, 18, 13, 23syl3anc 1363 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))
2513rpred 12419 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ)
2625, 25rexaddd 12615 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)))
278recnd 10657 . . . . . . . . . . . 12 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ∈ ℂ)
28272halvesd 11871 . . . . . . . . . . 11 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
2926, 28eqtrd 2853 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦))
308leidd 11194 . . . . . . . . . 10 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦))
3129, 30eqbrtrd 5079 . . . . . . . . 9 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))
32 bldisj 22935 . . . . . . . . 9 (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧ (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
334, 5, 18, 14, 14, 31, 32syl33anc 1377 . . . . . . . 8 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)
34 eleq2 2898 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥𝑚𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
35 ineq1 4178 . . . . . . . . . . 11 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛))
3635eqeq1d 2820 . . . . . . . . . 10 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))
3734, 363anbi13d 1429 . . . . . . . . 9 (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)))
38 eleq2 2898 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦𝑛𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
39 ineq2 4180 . . . . . . . . . . 11 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))))
4039eqeq1d 2820 . . . . . . . . . 10 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))
4138, 403anbi23d 1430 . . . . . . . . 9 (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)))
4237, 41rspc2ev 3632 . . . . . . . 8 (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4317, 20, 22, 24, 33, 42syl113anc 1374 . . . . . . 7 (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑥𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))
4443ex 413 . . . . . 6 ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4544ralrimivva 3188 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅)))
4615mopntopon 22976 . . . . . 6 (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋))
47 ishaus2 21887 . . . . . 6 ((MetOpen‘𝑑) ∈ (TopOn‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
483, 46, 473syl 18 . . . . 5 (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥𝑚𝑦𝑛 ∧ (𝑚𝑛) = ∅))))
4945, 48mpbird 258 . . . 4 (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus)
50 eleq1 2897 . . . 4 (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus))
5149, 50syl5ibrcom 248 . . 3 (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus))
5251rexlimiv 3277 . 2 (∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)
532, 52syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  cin 3932  c0 4288   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528  *cxr 10662   < clt 10663  cle 10664   / cdiv 11285  2c2 11680  +crp 12377   +𝑒 cxad 12493  ∞Metcxmet 20458  Metcmet 20459  ballcbl 20460  MetOpencmopn 20463  TopOnctopon 21446  Hauscha 21844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-haus 21851
This theorem is referenced by:  cnfldhaus  23320  rehaus  23334  metreg  23398  lmcau  23843  metsscmetcld  23845  minveclem4a  23960  minvecolem4a  28581  minvecolem4b  28582  minvecolem4  28584  hlimf  28941  hmopidmchi  29855  rrhcn  31137  rrexthaus  31147  sitmcl  31508  heiborlem9  34978  bfplem1  34981
  Copyright terms: Public domain W3C validator