| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version | ||
| Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdstopn.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdstopn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdstopn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdstps.r | ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) |
| Ref | Expression |
|---|---|
| prdstps | ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 2 | prdstps.r | . . . . . . 7 ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) | |
| 3 | 2 | ffvelcdmda 7038 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ TopSp) |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (TopOpen‘(𝑅‘𝑥)) = (TopOpen‘(𝑅‘𝑥)) | |
| 6 | 4, 5 | istps 22797 | . . . . . 6 ⊢ ((𝑅‘𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 7 | 3, 6 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 8 | 7 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 9 | eqid 2729 | . . . . 5 ⊢ (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 10 | 9 | pttopon 23459 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 11 | 1, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 12 | prdstopn.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 13 | prdstopn.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 14 | 2, 1 | fexd 7183 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 15 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 16 | 2 | fdmd 6680 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
| 17 | eqid 2729 | . . . . 5 ⊢ (TopSet‘𝑌) = (TopSet‘𝑌) | |
| 18 | 12, 13, 14, 15, 16, 17 | prdstset 17405 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅))) |
| 19 | topnfn 17364 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 20 | dffn2 6672 | . . . . . . 7 ⊢ (TopOpen Fn V ↔ TopOpen:V⟶V) | |
| 21 | 19, 20 | mpbi 230 | . . . . . 6 ⊢ TopOpen:V⟶V |
| 22 | ssv 3968 | . . . . . . 7 ⊢ TopSp ⊆ V | |
| 23 | fss 6686 | . . . . . . 7 ⊢ ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V) | |
| 24 | 2, 22, 23 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → 𝑅:𝐼⟶V) |
| 25 | fcompt 7087 | . . . . . 6 ⊢ ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 26 | 21, 24, 25 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) |
| 27 | 26 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 28 | 18, 27 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 29 | 12, 13, 14, 15, 16 | prdsbas 17396 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 30 | 29 | fveq2d 6844 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 31 | 11, 28, 30 | 3eltr4d 2843 | . 2 ⊢ (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
| 32 | 15, 17 | tsettps 22804 | . 2 ⊢ ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp) |
| 33 | 31, 32 | syl 17 | 1 ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Xcixp 8847 Basecbs 17155 TopSetcts 17202 TopOpenctopn 17360 ∏tcpt 17377 Xscprds 17384 TopOnctopon 22773 TopSpctps 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-topgen 17382 df-pt 17383 df-prds 17386 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 |
| This theorem is referenced by: pwstps 23493 xpstps 23673 prdstmdd 23987 |
| Copyright terms: Public domain | W3C validator |