| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version | ||
| Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdstopn.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdstopn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdstopn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdstps.r | ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) |
| Ref | Expression |
|---|---|
| prdstps | ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 2 | prdstps.r | . . . . . . 7 ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) | |
| 3 | 2 | ffvelcdmda 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ TopSp) |
| 4 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 5 | eqid 2735 | . . . . . . 7 ⊢ (TopOpen‘(𝑅‘𝑥)) = (TopOpen‘(𝑅‘𝑥)) | |
| 6 | 4, 5 | istps 22872 | . . . . . 6 ⊢ ((𝑅‘𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 7 | 3, 6 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 8 | 7 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 9 | eqid 2735 | . . . . 5 ⊢ (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 10 | 9 | pttopon 23534 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 11 | 1, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 12 | prdstopn.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 13 | prdstopn.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 14 | 2, 1 | fexd 7219 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 15 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 16 | 2 | fdmd 6716 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
| 17 | eqid 2735 | . . . . 5 ⊢ (TopSet‘𝑌) = (TopSet‘𝑌) | |
| 18 | 12, 13, 14, 15, 16, 17 | prdstset 17480 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅))) |
| 19 | topnfn 17439 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 20 | dffn2 6708 | . . . . . . 7 ⊢ (TopOpen Fn V ↔ TopOpen:V⟶V) | |
| 21 | 19, 20 | mpbi 230 | . . . . . 6 ⊢ TopOpen:V⟶V |
| 22 | ssv 3983 | . . . . . . 7 ⊢ TopSp ⊆ V | |
| 23 | fss 6722 | . . . . . . 7 ⊢ ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V) | |
| 24 | 2, 22, 23 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → 𝑅:𝐼⟶V) |
| 25 | fcompt 7123 | . . . . . 6 ⊢ ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 26 | 21, 24, 25 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) |
| 27 | 26 | fveq2d 6880 | . . . 4 ⊢ (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 28 | 18, 27 | eqtrd 2770 | . . 3 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 29 | 12, 13, 14, 15, 16 | prdsbas 17471 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 30 | 29 | fveq2d 6880 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 31 | 11, 28, 30 | 3eltr4d 2849 | . 2 ⊢ (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
| 32 | 15, 17 | tsettps 22879 | . 2 ⊢ ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp) |
| 33 | 31, 32 | syl 17 | 1 ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 ∘ ccom 5658 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Xcixp 8911 Basecbs 17228 TopSetcts 17277 TopOpenctopn 17435 ∏tcpt 17452 Xscprds 17459 TopOnctopon 22848 TopSpctps 22870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-topgen 17457 df-pt 17458 df-prds 17461 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 |
| This theorem is referenced by: pwstps 23568 xpstps 23748 prdstmdd 24062 |
| Copyright terms: Public domain | W3C validator |