![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version |
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
prdstopn.y | β’ π = (πXsπ ) |
prdstopn.s | β’ (π β π β π) |
prdstopn.i | β’ (π β πΌ β π) |
prdstps.r | β’ (π β π :πΌβΆTopSp) |
Ref | Expression |
---|---|
prdstps | β’ (π β π β TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdstopn.i | . . . 4 β’ (π β πΌ β π) | |
2 | prdstps.r | . . . . . . 7 β’ (π β π :πΌβΆTopSp) | |
3 | 2 | ffvelcdmda 7083 | . . . . . 6 β’ ((π β§ π₯ β πΌ) β (π βπ₯) β TopSp) |
4 | eqid 2732 | . . . . . . 7 β’ (Baseβ(π βπ₯)) = (Baseβ(π βπ₯)) | |
5 | eqid 2732 | . . . . . . 7 β’ (TopOpenβ(π βπ₯)) = (TopOpenβ(π βπ₯)) | |
6 | 4, 5 | istps 22427 | . . . . . 6 β’ ((π βπ₯) β TopSp β (TopOpenβ(π βπ₯)) β (TopOnβ(Baseβ(π βπ₯)))) |
7 | 3, 6 | sylib 217 | . . . . 5 β’ ((π β§ π₯ β πΌ) β (TopOpenβ(π βπ₯)) β (TopOnβ(Baseβ(π βπ₯)))) |
8 | 7 | ralrimiva 3146 | . . . 4 β’ (π β βπ₯ β πΌ (TopOpenβ(π βπ₯)) β (TopOnβ(Baseβ(π βπ₯)))) |
9 | eqid 2732 | . . . . 5 β’ (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) = (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) | |
10 | 9 | pttopon 23091 | . . . 4 β’ ((πΌ β π β§ βπ₯ β πΌ (TopOpenβ(π βπ₯)) β (TopOnβ(Baseβ(π βπ₯)))) β (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) β (TopOnβXπ₯ β πΌ (Baseβ(π βπ₯)))) |
11 | 1, 8, 10 | syl2anc 584 | . . 3 β’ (π β (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) β (TopOnβXπ₯ β πΌ (Baseβ(π βπ₯)))) |
12 | prdstopn.y | . . . . 5 β’ π = (πXsπ ) | |
13 | prdstopn.s | . . . . 5 β’ (π β π β π) | |
14 | 2, 1 | fexd 7225 | . . . . 5 β’ (π β π β V) |
15 | eqid 2732 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
16 | 2 | fdmd 6725 | . . . . 5 β’ (π β dom π = πΌ) |
17 | eqid 2732 | . . . . 5 β’ (TopSetβπ) = (TopSetβπ) | |
18 | 12, 13, 14, 15, 16, 17 | prdstset 17408 | . . . 4 β’ (π β (TopSetβπ) = (βtβ(TopOpen β π ))) |
19 | topnfn 17367 | . . . . . . 7 β’ TopOpen Fn V | |
20 | dffn2 6716 | . . . . . . 7 β’ (TopOpen Fn V β TopOpen:VβΆV) | |
21 | 19, 20 | mpbi 229 | . . . . . 6 β’ TopOpen:VβΆV |
22 | ssv 4005 | . . . . . . 7 β’ TopSp β V | |
23 | fss 6731 | . . . . . . 7 β’ ((π :πΌβΆTopSp β§ TopSp β V) β π :πΌβΆV) | |
24 | 2, 22, 23 | sylancl 586 | . . . . . 6 β’ (π β π :πΌβΆV) |
25 | fcompt 7127 | . . . . . 6 β’ ((TopOpen:VβΆV β§ π :πΌβΆV) β (TopOpen β π ) = (π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) | |
26 | 21, 24, 25 | sylancr 587 | . . . . 5 β’ (π β (TopOpen β π ) = (π₯ β πΌ β¦ (TopOpenβ(π βπ₯)))) |
27 | 26 | fveq2d 6892 | . . . 4 β’ (π β (βtβ(TopOpen β π )) = (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯))))) |
28 | 18, 27 | eqtrd 2772 | . . 3 β’ (π β (TopSetβπ) = (βtβ(π₯ β πΌ β¦ (TopOpenβ(π βπ₯))))) |
29 | 12, 13, 14, 15, 16 | prdsbas 17399 | . . . 4 β’ (π β (Baseβπ) = Xπ₯ β πΌ (Baseβ(π βπ₯))) |
30 | 29 | fveq2d 6892 | . . 3 β’ (π β (TopOnβ(Baseβπ)) = (TopOnβXπ₯ β πΌ (Baseβ(π βπ₯)))) |
31 | 11, 28, 30 | 3eltr4d 2848 | . 2 β’ (π β (TopSetβπ) β (TopOnβ(Baseβπ))) |
32 | 15, 17 | tsettps 22434 | . 2 β’ ((TopSetβπ) β (TopOnβ(Baseβπ)) β π β TopSp) |
33 | 31, 32 | syl 17 | 1 β’ (π β π β TopSp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 β wss 3947 β¦ cmpt 5230 β ccom 5679 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 Xcixp 8887 Basecbs 17140 TopSetcts 17199 TopOpenctopn 17363 βtcpt 17380 Xscprds 17387 TopOnctopon 22403 TopSpctps 22425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-topgen 17385 df-pt 17386 df-prds 17389 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 |
This theorem is referenced by: pwstps 23125 xpstps 23305 prdstmdd 23619 |
Copyright terms: Public domain | W3C validator |