MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstps Structured version   Visualization version   GIF version

Theorem prdstps 22237
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstps.r (𝜑𝑅:𝐼⟶TopSp)
Assertion
Ref Expression
prdstps (𝜑𝑌 ∈ TopSp)

Proof of Theorem prdstps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdstopn.i . . . 4 (𝜑𝐼𝑊)
2 prdstps.r . . . . . . 7 (𝜑𝑅:𝐼⟶TopSp)
32ffvelrnda 6842 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ TopSp)
4 eqid 2824 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
5 eqid 2824 . . . . . . 7 (TopOpen‘(𝑅𝑥)) = (TopOpen‘(𝑅𝑥))
64, 5istps 21542 . . . . . 6 ((𝑅𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
73, 6sylib 221 . . . . 5 ((𝜑𝑥𝐼) → (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
87ralrimiva 3177 . . . 4 (𝜑 → ∀𝑥𝐼 (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
9 eqid 2824 . . . . 5 (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
109pttopon 22204 . . . 4 ((𝐼𝑊 ∧ ∀𝑥𝐼 (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥)))) → (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) ∈ (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
111, 8, 10syl2anc 587 . . 3 (𝜑 → (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) ∈ (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
12 prdstopn.y . . . . 5 𝑌 = (𝑆Xs𝑅)
13 prdstopn.s . . . . 5 (𝜑𝑆𝑉)
14 fex 6980 . . . . . 6 ((𝑅:𝐼⟶TopSp ∧ 𝐼𝑊) → 𝑅 ∈ V)
152, 1, 14syl2anc 587 . . . . 5 (𝜑𝑅 ∈ V)
16 eqid 2824 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
172fdmd 6513 . . . . 5 (𝜑 → dom 𝑅 = 𝐼)
18 eqid 2824 . . . . 5 (TopSet‘𝑌) = (TopSet‘𝑌)
1912, 13, 15, 16, 17, 18prdstset 16739 . . . 4 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
20 topnfn 16699 . . . . . . 7 TopOpen Fn V
21 dffn2 6505 . . . . . . 7 (TopOpen Fn V ↔ TopOpen:V⟶V)
2220, 21mpbi 233 . . . . . 6 TopOpen:V⟶V
23 ssv 3977 . . . . . . 7 TopSp ⊆ V
24 fss 6517 . . . . . . 7 ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V)
252, 23, 24sylancl 589 . . . . . 6 (𝜑𝑅:𝐼⟶V)
26 fcompt 6886 . . . . . 6 ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
2722, 25, 26sylancr 590 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) = (𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
2827fveq2d 6665 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))))
2919, 28eqtrd 2859 . . 3 (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))))
3012, 13, 15, 16, 17prdsbas 16730 . . . 4 (𝜑 → (Base‘𝑌) = X𝑥𝐼 (Base‘(𝑅𝑥)))
3130fveq2d 6665 . . 3 (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
3211, 29, 313eltr4d 2931 . 2 (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
3316, 18tsettps 21549 . 2 ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp)
3432, 33syl 17 1 (𝜑𝑌 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  Vcvv 3480  wss 3919  cmpt 5132  ccom 5546   Fn wfn 6338  wf 6339  cfv 6343  (class class class)co 7149  Xcixp 8457  Basecbs 16483  TopSetcts 16571  TopOpenctopn 16695  tcpt 16712  Xscprds 16719  TopOnctopon 21518  TopSpctps 21540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fi 8872  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-topgen 16717  df-pt 16718  df-prds 16721  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554
This theorem is referenced by:  pwstps  22238  xpstps  22418  prdstmdd  22732
  Copyright terms: Public domain W3C validator