MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstps Structured version   Visualization version   GIF version

Theorem prdstps 22220
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstps.r (𝜑𝑅:𝐼⟶TopSp)
Assertion
Ref Expression
prdstps (𝜑𝑌 ∈ TopSp)

Proof of Theorem prdstps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdstopn.i . . . 4 (𝜑𝐼𝑊)
2 prdstps.r . . . . . . 7 (𝜑𝑅:𝐼⟶TopSp)
32ffvelrnda 6837 . . . . . 6 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ TopSp)
4 eqid 2821 . . . . . . 7 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
5 eqid 2821 . . . . . . 7 (TopOpen‘(𝑅𝑥)) = (TopOpen‘(𝑅𝑥))
64, 5istps 21525 . . . . . 6 ((𝑅𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
73, 6sylib 220 . . . . 5 ((𝜑𝑥𝐼) → (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
87ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥𝐼 (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥))))
9 eqid 2821 . . . . 5 (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
109pttopon 22187 . . . 4 ((𝐼𝑊 ∧ ∀𝑥𝐼 (TopOpen‘(𝑅𝑥)) ∈ (TopOn‘(Base‘(𝑅𝑥)))) → (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) ∈ (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
111, 8, 10syl2anc 586 . . 3 (𝜑 → (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))) ∈ (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
12 prdstopn.y . . . . 5 𝑌 = (𝑆Xs𝑅)
13 prdstopn.s . . . . 5 (𝜑𝑆𝑉)
14 fex 6975 . . . . . 6 ((𝑅:𝐼⟶TopSp ∧ 𝐼𝑊) → 𝑅 ∈ V)
152, 1, 14syl2anc 586 . . . . 5 (𝜑𝑅 ∈ V)
16 eqid 2821 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
172fdmd 6509 . . . . 5 (𝜑 → dom 𝑅 = 𝐼)
18 eqid 2821 . . . . 5 (TopSet‘𝑌) = (TopSet‘𝑌)
1912, 13, 15, 16, 17, 18prdstset 16722 . . . 4 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
20 topnfn 16682 . . . . . . 7 TopOpen Fn V
21 dffn2 6502 . . . . . . 7 (TopOpen Fn V ↔ TopOpen:V⟶V)
2220, 21mpbi 232 . . . . . 6 TopOpen:V⟶V
23 ssv 3979 . . . . . . 7 TopSp ⊆ V
24 fss 6513 . . . . . . 7 ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V)
252, 23, 24sylancl 588 . . . . . 6 (𝜑𝑅:𝐼⟶V)
26 fcompt 6881 . . . . . 6 ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
2722, 25, 26sylancr 589 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅) = (𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥))))
2827fveq2d 6660 . . . 4 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))))
2919, 28eqtrd 2856 . . 3 (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥𝐼 ↦ (TopOpen‘(𝑅𝑥)))))
3012, 13, 15, 16, 17prdsbas 16713 . . . 4 (𝜑 → (Base‘𝑌) = X𝑥𝐼 (Base‘(𝑅𝑥)))
3130fveq2d 6660 . . 3 (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥𝐼 (Base‘(𝑅𝑥))))
3211, 29, 313eltr4d 2928 . 2 (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
3316, 18tsettps 21532 . 2 ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp)
3432, 33syl 17 1 (𝜑𝑌 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3486  wss 3924  cmpt 5132  ccom 5545   Fn wfn 6336  wf 6337  cfv 6341  (class class class)co 7142  Xcixp 8447  Basecbs 16466  TopSetcts 16554  TopOpenctopn 16678  tcpt 16695  Xscprds 16702  TopOnctopon 21501  TopSpctps 21523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fi 8861  df-sup 8892  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-topgen 16700  df-pt 16701  df-prds 16704  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537
This theorem is referenced by:  pwstps  22221  xpstps  22401  prdstmdd  22715
  Copyright terms: Public domain W3C validator