![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version |
Description: A structure product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
prdstopn.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdstopn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdstopn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdstps.r | ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) |
Ref | Expression |
---|---|
prdstps | ⊢ (𝜑 → 𝑌 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdstopn.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | prdstps.r | . . . . . . 7 ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) | |
3 | 2 | ffvelrnda 6585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ TopSp) |
4 | eqid 2799 | . . . . . . 7 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
5 | eqid 2799 | . . . . . . 7 ⊢ (TopOpen‘(𝑅‘𝑥)) = (TopOpen‘(𝑅‘𝑥)) | |
6 | 4, 5 | istps 21067 | . . . . . 6 ⊢ ((𝑅‘𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
7 | 3, 6 | sylib 210 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
8 | 7 | ralrimiva 3147 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
9 | eqid 2799 | . . . . 5 ⊢ (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
10 | 9 | pttopon 21728 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
11 | 1, 8, 10 | syl2anc 580 | . . 3 ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
12 | prdstopn.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
13 | prdstopn.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
14 | fex 6718 | . . . . . 6 ⊢ ((𝑅:𝐼⟶TopSp ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) | |
15 | 2, 1, 14 | syl2anc 580 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
16 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
17 | 2 | fdmd 6265 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
18 | eqid 2799 | . . . . 5 ⊢ (TopSet‘𝑌) = (TopSet‘𝑌) | |
19 | 12, 13, 15, 16, 17, 18 | prdstset 16441 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅))) |
20 | topnfn 16401 | . . . . . . 7 ⊢ TopOpen Fn V | |
21 | dffn2 6258 | . . . . . . 7 ⊢ (TopOpen Fn V ↔ TopOpen:V⟶V) | |
22 | 20, 21 | mpbi 222 | . . . . . 6 ⊢ TopOpen:V⟶V |
23 | ssv 3821 | . . . . . . 7 ⊢ TopSp ⊆ V | |
24 | fss 6269 | . . . . . . 7 ⊢ ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V) | |
25 | 2, 23, 24 | sylancl 581 | . . . . . 6 ⊢ (𝜑 → 𝑅:𝐼⟶V) |
26 | fcompt 6627 | . . . . . 6 ⊢ ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
27 | 22, 25, 26 | sylancr 582 | . . . . 5 ⊢ (𝜑 → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) |
28 | 27 | fveq2d 6415 | . . . 4 ⊢ (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
29 | 19, 28 | eqtrd 2833 | . . 3 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
30 | 12, 13, 15, 16, 17 | prdsbas 16432 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
31 | 30 | fveq2d 6415 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
32 | 11, 29, 31 | 3eltr4d 2893 | . 2 ⊢ (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
33 | 16, 18 | tsettps 21074 | . 2 ⊢ ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp) |
34 | 32, 33 | syl 17 | 1 ⊢ (𝜑 → 𝑌 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 ⊆ wss 3769 ↦ cmpt 4922 ∘ ccom 5316 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 Xcixp 8148 Basecbs 16184 TopSetcts 16273 TopOpenctopn 16397 ∏tcpt 16414 Xscprds 16421 TopOnctopon 21043 TopSpctps 21065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-topgen 16419 df-pt 16420 df-prds 16423 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 |
This theorem is referenced by: pwstps 21762 xpstps 21942 prdstmdd 22255 |
Copyright terms: Public domain | W3C validator |