| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version | ||
| Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdstopn.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
| prdstopn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdstopn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdstps.r | ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) |
| Ref | Expression |
|---|---|
| prdstps | ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdstopn.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 2 | prdstps.r | . . . . . . 7 ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) | |
| 3 | 2 | ffvelcdmda 7012 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ TopSp) |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (TopOpen‘(𝑅‘𝑥)) = (TopOpen‘(𝑅‘𝑥)) | |
| 6 | 4, 5 | istps 22844 | . . . . . 6 ⊢ ((𝑅‘𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 7 | 3, 6 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 8 | 7 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
| 9 | eqid 2731 | . . . . 5 ⊢ (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 10 | 9 | pttopon 23506 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 11 | 1, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 12 | prdstopn.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 13 | prdstopn.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 14 | 2, 1 | fexd 7156 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 15 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 16 | 2 | fdmd 6656 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
| 17 | eqid 2731 | . . . . 5 ⊢ (TopSet‘𝑌) = (TopSet‘𝑌) | |
| 18 | 12, 13, 14, 15, 16, 17 | prdstset 17365 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅))) |
| 19 | topnfn 17324 | . . . . . . 7 ⊢ TopOpen Fn V | |
| 20 | dffn2 6648 | . . . . . . 7 ⊢ (TopOpen Fn V ↔ TopOpen:V⟶V) | |
| 21 | 19, 20 | mpbi 230 | . . . . . 6 ⊢ TopOpen:V⟶V |
| 22 | ssv 3954 | . . . . . . 7 ⊢ TopSp ⊆ V | |
| 23 | fss 6662 | . . . . . . 7 ⊢ ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V) | |
| 24 | 2, 22, 23 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → 𝑅:𝐼⟶V) |
| 25 | fcompt 7061 | . . . . . 6 ⊢ ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
| 26 | 21, 24, 25 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) |
| 27 | 26 | fveq2d 6821 | . . . 4 ⊢ (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 28 | 18, 27 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
| 29 | 12, 13, 14, 15, 16 | prdsbas 17356 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
| 30 | 29 | fveq2d 6821 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
| 31 | 11, 28, 30 | 3eltr4d 2846 | . 2 ⊢ (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
| 32 | 15, 17 | tsettps 22851 | . 2 ⊢ ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp) |
| 33 | 31, 32 | syl 17 | 1 ⊢ (𝜑 → 𝑌 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ↦ cmpt 5167 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Xcixp 8816 Basecbs 17115 TopSetcts 17162 TopOpenctopn 17320 ∏tcpt 17337 Xscprds 17344 TopOnctopon 22820 TopSpctps 22842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-topgen 17342 df-pt 17343 df-prds 17346 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 |
| This theorem is referenced by: pwstps 23540 xpstps 23720 prdstmdd 24034 |
| Copyright terms: Public domain | W3C validator |