Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdstps | Structured version Visualization version GIF version |
Description: A structure product of topological spaces is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
prdstopn.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdstopn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdstopn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdstps.r | ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) |
Ref | Expression |
---|---|
prdstps | ⊢ (𝜑 → 𝑌 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdstopn.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | prdstps.r | . . . . . . 7 ⊢ (𝜑 → 𝑅:𝐼⟶TopSp) | |
3 | 2 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ TopSp) |
4 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(𝑅‘𝑥)) = (Base‘(𝑅‘𝑥)) | |
5 | eqid 2738 | . . . . . . 7 ⊢ (TopOpen‘(𝑅‘𝑥)) = (TopOpen‘(𝑅‘𝑥)) | |
6 | 4, 5 | istps 21991 | . . . . . 6 ⊢ ((𝑅‘𝑥) ∈ TopSp ↔ (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
7 | 3, 6 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
8 | 7 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) |
9 | eqid 2738 | . . . . 5 ⊢ (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
10 | 9 | pttopon 22655 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ ∀𝑥 ∈ 𝐼 (TopOpen‘(𝑅‘𝑥)) ∈ (TopOn‘(Base‘(𝑅‘𝑥)))) → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
11 | 1, 8, 10 | syl2anc 583 | . . 3 ⊢ (𝜑 → (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) ∈ (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
12 | prdstopn.y | . . . . 5 ⊢ 𝑌 = (𝑆Xs𝑅) | |
13 | prdstopn.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
14 | 2, 1 | fexd 7085 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
15 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
16 | 2 | fdmd 6595 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐼) |
17 | eqid 2738 | . . . . 5 ⊢ (TopSet‘𝑌) = (TopSet‘𝑌) | |
18 | 12, 13, 14, 15, 16, 17 | prdstset 17094 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅))) |
19 | topnfn 17053 | . . . . . . 7 ⊢ TopOpen Fn V | |
20 | dffn2 6586 | . . . . . . 7 ⊢ (TopOpen Fn V ↔ TopOpen:V⟶V) | |
21 | 19, 20 | mpbi 229 | . . . . . 6 ⊢ TopOpen:V⟶V |
22 | ssv 3941 | . . . . . . 7 ⊢ TopSp ⊆ V | |
23 | fss 6601 | . . . . . . 7 ⊢ ((𝑅:𝐼⟶TopSp ∧ TopSp ⊆ V) → 𝑅:𝐼⟶V) | |
24 | 2, 22, 23 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → 𝑅:𝐼⟶V) |
25 | fcompt 6987 | . . . . . 6 ⊢ ((TopOpen:V⟶V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) | |
26 | 21, 24, 25 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (TopOpen ∘ 𝑅) = (𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥)))) |
27 | 26 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
28 | 18, 27 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (TopSet‘𝑌) = (∏t‘(𝑥 ∈ 𝐼 ↦ (TopOpen‘(𝑅‘𝑥))))) |
29 | 12, 13, 14, 15, 16 | prdsbas 17085 | . . . 4 ⊢ (𝜑 → (Base‘𝑌) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
30 | 29 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝑌)) = (TopOn‘X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)))) |
31 | 11, 28, 30 | 3eltr4d 2854 | . 2 ⊢ (𝜑 → (TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌))) |
32 | 15, 17 | tsettps 21998 | . 2 ⊢ ((TopSet‘𝑌) ∈ (TopOn‘(Base‘𝑌)) → 𝑌 ∈ TopSp) |
33 | 31, 32 | syl 17 | 1 ⊢ (𝜑 → 𝑌 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Xcixp 8643 Basecbs 16840 TopSetcts 16894 TopOpenctopn 17049 ∏tcpt 17066 Xscprds 17073 TopOnctopon 21967 TopSpctps 21989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-topgen 17071 df-pt 17072 df-prds 17075 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 |
This theorem is referenced by: pwstps 22689 xpstps 22869 prdstmdd 23183 |
Copyright terms: Public domain | W3C validator |