MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 23840
Description: Lemma for xpstopn 23841. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2740 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 fvexd 6935 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 8536 . . . . . 6 2o ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
5 fnpr2o 17617 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6 eqid 2740 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
71, 2, 4, 5, 6prdstopn 23657 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 topnfn 17485 . . . . . . . 8 TopOpen Fn V
9 dffn2 6749 . . . . . . . . 9 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
105, 9sylib 218 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
11 fnfco 6786 . . . . . . . 8 ((TopOpen Fn V ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
128, 10, 11sylancr 586 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
13 xpsfeq 17623 . . . . . . 7 ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
15 0ex 5325 . . . . . . . . . . . 12 ∅ ∈ V
1615prid1 4787 . . . . . . . . . . 11 ∅ ∈ {∅, 1o}
17 df2o3 8530 . . . . . . . . . . 11 2o = {∅, 1o}
1816, 17eleqtrri 2843 . . . . . . . . . 10 ∅ ∈ 2o
19 fvco2 7019 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ ∅ ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
205, 18, 19sylancl 585 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
21 fvpr0o 17619 . . . . . . . . . . . 12 (𝑅 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2221adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2322fveq2d 6924 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑅)
2523, 24eqtr4di 2798 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝐽)
2620, 25eqtrd 2780 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = 𝐽)
2726opeq2d 4904 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩ = ⟨∅, 𝐽⟩)
28 1oex 8532 . . . . . . . . . . . 12 1o ∈ V
2928prid2 4788 . . . . . . . . . . 11 1o ∈ {∅, 1o}
3029, 17eleqtrri 2843 . . . . . . . . . 10 1o ∈ 2o
31 fvco2 7019 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ 1o ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
325, 30, 31sylancl 585 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
33 fvpr1o 17620 . . . . . . . . . . . 12 (𝑆 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3433adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3534fveq2d 6924 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . 10 𝐾 = (TopOpen‘𝑆)
3735, 36eqtr4di 2798 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝐾)
3832, 37eqtrd 2780 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = 𝐾)
3938opeq2d 4904 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩ = ⟨1o, 𝐾⟩)
4027, 39preq12d 4766 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4114, 40eqtr3d 2782 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4241fveq2d 6924 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
437, 42eqtrd 2780 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
4443oveq1d 7463 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
45 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
46 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
47 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
48 simpl 482 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
49 simpr 484 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
50 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
51 eqid 2740 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5245, 46, 47, 48, 49, 50, 51, 1xpsval 17630 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5345, 46, 47, 48, 49, 50, 51, 1xpsrnbas 17631 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5450xpsff1o2 17629 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
55 f1ocnv 6874 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5654, 55mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
57 f1ofo 6869 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5856, 57syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
59 ovexd 7483 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
60 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6152, 53, 58, 59, 6, 60imastopn 23749 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹))
6246, 24istps 22961 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6348, 62sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6447, 36istps 22961 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6549, 64sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6650, 63, 65xpstopnlem1 23838 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
67 hmeocnv 23791 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) → 𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)))
68 hmeoqtop 23804 . . 3 (𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
6966, 67, 683syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
7044, 61, 693eqtr4d 2790 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {cpr 4650  cop 4654   × cxp 5698  ccnv 5699  ran crn 5701  ccom 5704  Oncon0 6395   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  1oc1o 8515  2oc2o 8516  Basecbs 17258  Scalarcsca 17314  TopOpenctopn 17481  tcpt 17498  Xscprds 17505   qTop cqtop 17563   ×s cxps 17566  TopOnctopon 22937  TopSpctps 22959   ×t ctx 23589  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-topgen 17503  df-pt 17504  df-prds 17507  df-qtop 17567  df-imas 17568  df-xps 17570  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-tx 23591  df-hmeo 23784
This theorem is referenced by:  xpstopn  23841
  Copyright terms: Public domain W3C validator