MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 23820
Description: Lemma for xpstopn 23821. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2736 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 fvexd 6920 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 8521 . . . . . 6 2o ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
5 fnpr2o 17603 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6 eqid 2736 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
71, 2, 4, 5, 6prdstopn 23637 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 topnfn 17471 . . . . . . . 8 TopOpen Fn V
9 dffn2 6737 . . . . . . . . 9 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
105, 9sylib 218 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
11 fnfco 6772 . . . . . . . 8 ((TopOpen Fn V ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
128, 10, 11sylancr 587 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
13 xpsfeq 17609 . . . . . . 7 ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
15 0ex 5306 . . . . . . . . . . . 12 ∅ ∈ V
1615prid1 4761 . . . . . . . . . . 11 ∅ ∈ {∅, 1o}
17 df2o3 8515 . . . . . . . . . . 11 2o = {∅, 1o}
1816, 17eleqtrri 2839 . . . . . . . . . 10 ∅ ∈ 2o
19 fvco2 7005 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ ∅ ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
205, 18, 19sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
21 fvpr0o 17605 . . . . . . . . . . . 12 (𝑅 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2221adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2322fveq2d 6909 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑅)
2523, 24eqtr4di 2794 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝐽)
2620, 25eqtrd 2776 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = 𝐽)
2726opeq2d 4879 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩ = ⟨∅, 𝐽⟩)
28 1oex 8517 . . . . . . . . . . . 12 1o ∈ V
2928prid2 4762 . . . . . . . . . . 11 1o ∈ {∅, 1o}
3029, 17eleqtrri 2839 . . . . . . . . . 10 1o ∈ 2o
31 fvco2 7005 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ 1o ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
325, 30, 31sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
33 fvpr1o 17606 . . . . . . . . . . . 12 (𝑆 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3433adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3534fveq2d 6909 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . 10 𝐾 = (TopOpen‘𝑆)
3735, 36eqtr4di 2794 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝐾)
3832, 37eqtrd 2776 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = 𝐾)
3938opeq2d 4879 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩ = ⟨1o, 𝐾⟩)
4027, 39preq12d 4740 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4114, 40eqtr3d 2778 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4241fveq2d 6909 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
437, 42eqtrd 2776 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
4443oveq1d 7447 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
45 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
46 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
47 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
48 simpl 482 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
49 simpr 484 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
50 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
51 eqid 2736 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5245, 46, 47, 48, 49, 50, 51, 1xpsval 17616 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5345, 46, 47, 48, 49, 50, 51, 1xpsrnbas 17617 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5450xpsff1o2 17615 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
55 f1ocnv 6859 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5654, 55mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
57 f1ofo 6854 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5856, 57syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
59 ovexd 7467 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
60 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6152, 53, 58, 59, 6, 60imastopn 23729 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹))
6246, 24istps 22941 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6348, 62sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6447, 36istps 22941 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6549, 64sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6650, 63, 65xpstopnlem1 23818 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
67 hmeocnv 23771 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) → 𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)))
68 hmeoqtop 23784 . . 3 (𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
6966, 67, 683syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
7044, 61, 693eqtr4d 2786 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  {cpr 4627  cop 4631   × cxp 5682  ccnv 5683  ran crn 5685  ccom 5688  Oncon0 6383   Fn wfn 6555  wf 6556  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  cmpo 7434  1oc1o 8500  2oc2o 8501  Basecbs 17248  Scalarcsca 17301  TopOpenctopn 17467  tcpt 17484  Xscprds 17491   qTop cqtop 17549   ×s cxps 17552  TopOnctopon 22917  TopSpctps 22939   ×t ctx 23569  Homeochmeo 23762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-topgen 17489  df-pt 17490  df-prds 17493  df-qtop 17553  df-imas 17554  df-xps 17556  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cn 23236  df-cnp 23237  df-tx 23571  df-hmeo 23764
This theorem is referenced by:  xpstopn  23821
  Copyright terms: Public domain W3C validator