MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 22870
Description: Lemma for xpstopn 22871. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2738 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 fvexd 6771 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 8275 . . . . . 6 2o ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
5 fnpr2o 17185 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6 eqid 2738 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
71, 2, 4, 5, 6prdstopn 22687 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 topnfn 17053 . . . . . . . 8 TopOpen Fn V
9 dffn2 6586 . . . . . . . . 9 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
105, 9sylib 217 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
11 fnfco 6623 . . . . . . . 8 ((TopOpen Fn V ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
128, 10, 11sylancr 586 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
13 xpsfeq 17191 . . . . . . 7 ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
15 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
1615prid1 4695 . . . . . . . . . . 11 ∅ ∈ {∅, 1o}
17 df2o3 8282 . . . . . . . . . . 11 2o = {∅, 1o}
1816, 17eleqtrri 2838 . . . . . . . . . 10 ∅ ∈ 2o
19 fvco2 6847 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ ∅ ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
205, 18, 19sylancl 585 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
21 fvpr0o 17187 . . . . . . . . . . . 12 (𝑅 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2221adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2322fveq2d 6760 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑅)
2523, 24eqtr4di 2797 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝐽)
2620, 25eqtrd 2778 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = 𝐽)
2726opeq2d 4808 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩ = ⟨∅, 𝐽⟩)
28 1oex 8280 . . . . . . . . . . . 12 1o ∈ V
2928prid2 4696 . . . . . . . . . . 11 1o ∈ {∅, 1o}
3029, 17eleqtrri 2838 . . . . . . . . . 10 1o ∈ 2o
31 fvco2 6847 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ 1o ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
325, 30, 31sylancl 585 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
33 fvpr1o 17188 . . . . . . . . . . . 12 (𝑆 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3433adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3534fveq2d 6760 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . 10 𝐾 = (TopOpen‘𝑆)
3735, 36eqtr4di 2797 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝐾)
3832, 37eqtrd 2778 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = 𝐾)
3938opeq2d 4808 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩ = ⟨1o, 𝐾⟩)
4027, 39preq12d 4674 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4114, 40eqtr3d 2780 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4241fveq2d 6760 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
437, 42eqtrd 2778 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
4443oveq1d 7270 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
45 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
46 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
47 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
48 simpl 482 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
49 simpr 484 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
50 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
51 eqid 2738 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5245, 46, 47, 48, 49, 50, 51, 1xpsval 17198 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5345, 46, 47, 48, 49, 50, 51, 1xpsrnbas 17199 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5450xpsff1o2 17197 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
55 f1ocnv 6712 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5654, 55mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
57 f1ofo 6707 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5856, 57syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
59 ovexd 7290 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
60 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6152, 53, 58, 59, 6, 60imastopn 22779 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹))
6246, 24istps 21991 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6348, 62sylib 217 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6447, 36istps 21991 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6549, 64sylib 217 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6650, 63, 65xpstopnlem1 22868 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
67 hmeocnv 22821 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) → 𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)))
68 hmeoqtop 22834 . . 3 (𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
6966, 67, 683syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
7044, 61, 693eqtr4d 2788 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {cpr 4560  cop 4564   × cxp 5578  ccnv 5579  ran crn 5581  ccom 5584  Oncon0 6251   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261  Basecbs 16840  Scalarcsca 16891  TopOpenctopn 17049  tcpt 17066  Xscprds 17073   qTop cqtop 17131   ×s cxps 17134  TopOnctopon 21967  TopSpctps 21989   ×t ctx 22619  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-topgen 17071  df-pt 17072  df-prds 17075  df-qtop 17135  df-imas 17136  df-xps 17138  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814
This theorem is referenced by:  xpstopn  22871
  Copyright terms: Public domain W3C validator