MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 22962
Description: Lemma for xpstopn 22963. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2738 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 fvexd 6789 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 8311 . . . . . 6 2o ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
5 fnpr2o 17268 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6 eqid 2738 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
71, 2, 4, 5, 6prdstopn 22779 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 topnfn 17136 . . . . . . . 8 TopOpen Fn V
9 dffn2 6602 . . . . . . . . 9 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
105, 9sylib 217 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
11 fnfco 6639 . . . . . . . 8 ((TopOpen Fn V ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
128, 10, 11sylancr 587 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
13 xpsfeq 17274 . . . . . . 7 ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
15 0ex 5231 . . . . . . . . . . . 12 ∅ ∈ V
1615prid1 4698 . . . . . . . . . . 11 ∅ ∈ {∅, 1o}
17 df2o3 8305 . . . . . . . . . . 11 2o = {∅, 1o}
1816, 17eleqtrri 2838 . . . . . . . . . 10 ∅ ∈ 2o
19 fvco2 6865 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ ∅ ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
205, 18, 19sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
21 fvpr0o 17270 . . . . . . . . . . . 12 (𝑅 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2221adantr 481 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2322fveq2d 6778 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑅)
2523, 24eqtr4di 2796 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝐽)
2620, 25eqtrd 2778 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = 𝐽)
2726opeq2d 4811 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩ = ⟨∅, 𝐽⟩)
28 1oex 8307 . . . . . . . . . . . 12 1o ∈ V
2928prid2 4699 . . . . . . . . . . 11 1o ∈ {∅, 1o}
3029, 17eleqtrri 2838 . . . . . . . . . 10 1o ∈ 2o
31 fvco2 6865 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ 1o ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
325, 30, 31sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
33 fvpr1o 17271 . . . . . . . . . . . 12 (𝑆 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3433adantl 482 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3534fveq2d 6778 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . 10 𝐾 = (TopOpen‘𝑆)
3735, 36eqtr4di 2796 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝐾)
3832, 37eqtrd 2778 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = 𝐾)
3938opeq2d 4811 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩ = ⟨1o, 𝐾⟩)
4027, 39preq12d 4677 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4114, 40eqtr3d 2780 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4241fveq2d 6778 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
437, 42eqtrd 2778 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
4443oveq1d 7290 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
45 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
46 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
47 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
48 simpl 483 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
49 simpr 485 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
50 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
51 eqid 2738 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5245, 46, 47, 48, 49, 50, 51, 1xpsval 17281 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5345, 46, 47, 48, 49, 50, 51, 1xpsrnbas 17282 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5450xpsff1o2 17280 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
55 f1ocnv 6728 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5654, 55mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
57 f1ofo 6723 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5856, 57syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
59 ovexd 7310 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
60 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6152, 53, 58, 59, 6, 60imastopn 22871 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹))
6246, 24istps 22083 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6348, 62sylib 217 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6447, 36istps 22083 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6549, 64sylib 217 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6650, 63, 65xpstopnlem1 22960 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
67 hmeocnv 22913 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) → 𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)))
68 hmeoqtop 22926 . . 3 (𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
6966, 67, 683syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
7044, 61, 693eqtr4d 2788 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {cpr 4563  cop 4567   × cxp 5587  ccnv 5588  ran crn 5590  ccom 5593  Oncon0 6266   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  Basecbs 16912  Scalarcsca 16965  TopOpenctopn 17132  tcpt 17149  Xscprds 17156   qTop cqtop 17214   ×s cxps 17217  TopOnctopon 22059  TopSpctps 22081   ×t ctx 22711  Homeochmeo 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-topgen 17154  df-pt 17155  df-prds 17158  df-qtop 17218  df-imas 17219  df-xps 17221  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906
This theorem is referenced by:  xpstopn  22963
  Copyright terms: Public domain W3C validator