MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 21835
Description: Lemma for xpstopn 21836. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2771 . . . . 5 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
2 fvexd 6346 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 7726 . . . . . 6 2𝑜 ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2𝑜 ∈ On)
5 xpscfn 16427 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
6 eqid 2771 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
71, 2, 4, 5, 6prdstopn 21652 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (∏t‘(TopOpen ∘ ({𝑅} +𝑐 {𝑆}))))
8 topnfn 16294 . . . . . . . 8 TopOpen Fn V
9 dffn2 6186 . . . . . . . . 9 (({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝑅} +𝑐 {𝑆}):2𝑜⟶V)
105, 9sylib 208 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({𝑅} +𝑐 {𝑆}):2𝑜⟶V)
11 fnfco 6210 . . . . . . . 8 ((TopOpen Fn V ∧ ({𝑅} +𝑐 {𝑆}):2𝑜⟶V) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜)
128, 10, 11sylancr 575 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜)
13 xpsfeq 16432 . . . . . . 7 ((TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = (TopOpen ∘ ({𝑅} +𝑐 {𝑆})))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = (TopOpen ∘ ({𝑅} +𝑐 {𝑆})))
15 0ex 4925 . . . . . . . . . . . . 13 ∅ ∈ V
1615prid1 4434 . . . . . . . . . . . 12 ∅ ∈ {∅, 1𝑜}
17 df2o3 7731 . . . . . . . . . . . 12 2𝑜 = {∅, 1𝑜}
1816, 17eleqtrri 2849 . . . . . . . . . . 11 ∅ ∈ 2𝑜
19 fvco2 6417 . . . . . . . . . . 11 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ ∅ ∈ 2𝑜) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)))
205, 18, 19sylancl 574 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)))
21 xpsc0 16428 . . . . . . . . . . . . 13 (𝑅 ∈ TopSp → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2221adantr 466 . . . . . . . . . . . 12 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2322fveq2d 6337 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑅)
2523, 24syl6eqr 2823 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)) = 𝐽)
2620, 25eqtrd 2805 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = 𝐽)
2726sneqd 4329 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} = {𝐽})
28 1oex 7725 . . . . . . . . . . . . 13 1𝑜 ∈ V
2928prid2 4435 . . . . . . . . . . . 12 1𝑜 ∈ {∅, 1𝑜}
3029, 17eleqtrri 2849 . . . . . . . . . . 11 1𝑜 ∈ 2𝑜
31 fvco2 6417 . . . . . . . . . . 11 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ 1𝑜 ∈ 2𝑜) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)))
325, 30, 31sylancl 574 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)))
33 xpsc1 16429 . . . . . . . . . . . . 13 (𝑆 ∈ TopSp → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3433adantl 467 . . . . . . . . . . . 12 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3534fveq2d 6337 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝑆)
3735, 36syl6eqr 2823 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)) = 𝐾)
3832, 37eqtrd 2805 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = 𝐾)
3938sneqd 4329 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)} = {𝐾})
4027, 39oveq12d 6814 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ({𝐽} +𝑐 {𝐾}))
4140cnveqd 5435 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ({𝐽} +𝑐 {𝐾}))
4214, 41eqtr3d 2807 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) = ({𝐽} +𝑐 {𝐾}))
4342fveq2d 6337 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ ({𝑅} +𝑐 {𝑆}))) = (∏t({𝐽} +𝑐 {𝐾})))
447, 43eqtrd 2805 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (∏t({𝐽} +𝑐 {𝐾})))
4544oveq1d 6811 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) qTop 𝐹) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
46 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
47 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
48 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
49 simpl 468 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
50 simpr 471 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
51 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
52 eqid 2771 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5346, 47, 48, 49, 50, 51, 52, 1xpsval 16440 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
5446, 47, 48, 49, 50, 51, 52, 1xpslem 16441 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
5551xpsff1o2 16439 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
56 f1ocnv 6291 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5755, 56mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
58 f1ofo 6286 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5957, 58syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
60 ovexd 6829 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V)
61 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6253, 54, 59, 60, 6, 61imastopn 21744 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) qTop 𝐹))
6347, 24istps 20959 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6449, 63sylib 208 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6548, 36istps 20959 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6650, 65sylib 208 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6751, 64, 66xpstopnlem1 21833 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
68 hmeocnv 21786 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))) → 𝐹 ∈ ((∏t({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾)))
69 hmeoqtop 21799 . . 3 (𝐹 ∈ ((∏t({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
7067, 68, 693syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
7145, 62, 703eqtr4d 2815 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  {csn 4317  {cpr 4319   × cxp 5248  ccnv 5249  ran crn 5251  ccom 5254  Oncon0 5865   Fn wfn 6025  wf 6026  ontowfo 6028  1-1-ontowf1o 6029  cfv 6030  (class class class)co 6796  cmpt2 6798  1𝑜c1o 7710  2𝑜c2o 7711   +𝑐 ccda 9195  Basecbs 16064  Scalarcsca 16152  TopOpenctopn 16290  tcpt 16307  Xscprds 16314   qTop cqtop 16371   ×s cxps 16374  TopOnctopon 20935  TopSpctps 20957   ×t ctx 21584  Homeochmeo 21777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fi 8477  df-sup 8508  df-inf 8509  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-topgen 16312  df-pt 16313  df-prds 16316  df-qtop 16375  df-imas 16376  df-xps 16378  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779
This theorem is referenced by:  xpstopn  21836
  Copyright terms: Public domain W3C validator