MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 23727
Description: Lemma for xpstopn 23728. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2731 . . . . 5 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 fvexd 6837 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
3 2on 8398 . . . . . 6 2o ∈ On
43a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
5 fnpr2o 17461 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
6 eqid 2731 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
71, 2, 4, 5, 6prdstopn 23544 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 topnfn 17329 . . . . . . . 8 TopOpen Fn V
9 dffn2 6653 . . . . . . . . 9 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
105, 9sylib 218 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V)
11 fnfco 6688 . . . . . . . 8 ((TopOpen Fn V ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶V) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
128, 10, 11sylancr 587 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o)
13 xpsfeq 17467 . . . . . . 7 ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) Fn 2o → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
1412, 13syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
15 0ex 5245 . . . . . . . . . . . 12 ∅ ∈ V
1615prid1 4715 . . . . . . . . . . 11 ∅ ∈ {∅, 1o}
17 df2o3 8393 . . . . . . . . . . 11 2o = {∅, 1o}
1816, 17eleqtrri 2830 . . . . . . . . . 10 ∅ ∈ 2o
19 fvco2 6919 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ ∅ ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
205, 18, 19sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)))
21 fvpr0o 17463 . . . . . . . . . . . 12 (𝑅 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2221adantr 480 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
2322fveq2d 6826 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = (TopOpen‘𝑅))
24 xpstopn.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝑅)
2523, 24eqtr4di 2784 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅)) = 𝐽)
2620, 25eqtrd 2766 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅) = 𝐽)
2726opeq2d 4832 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩ = ⟨∅, 𝐽⟩)
28 1oex 8395 . . . . . . . . . . . 12 1o ∈ V
2928prid2 4716 . . . . . . . . . . 11 1o ∈ {∅, 1o}
3029, 17eleqtrri 2830 . . . . . . . . . 10 1o ∈ 2o
31 fvco2 6919 . . . . . . . . . 10 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ 1o ∈ 2o) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
325, 30, 31sylancl 586 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)))
33 fvpr1o 17464 . . . . . . . . . . . 12 (𝑆 ∈ TopSp → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3433adantl 481 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
3534fveq2d 6826 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = (TopOpen‘𝑆))
36 xpstopn.k . . . . . . . . . 10 𝐾 = (TopOpen‘𝑆)
3735, 36eqtr4di 2784 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o)) = 𝐾)
3832, 37eqtrd 2766 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o) = 𝐾)
3938opeq2d 4832 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩ = ⟨1o, 𝐾⟩)
4027, 39preq12d 4694 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘∅)⟩, ⟨1o, ((TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})‘1o)⟩} = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4114, 40eqtr3d 2768 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
4241fveq2d 6826 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
437, 42eqtrd 2766 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))
4443oveq1d 7361 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
45 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
46 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
47 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
48 simpl 482 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
49 simpr 484 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
50 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
51 eqid 2731 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5245, 46, 47, 48, 49, 50, 51, 1xpsval 17474 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5345, 46, 47, 48, 49, 50, 51, 1xpsrnbas 17475 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
5450xpsff1o2 17473 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
55 f1ocnv 6775 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5654, 55mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
57 f1ofo 6770 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
5856, 57syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
59 ovexd 7381 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
60 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6152, 53, 58, 59, 6, 60imastopn 23636 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) qTop 𝐹))
6246, 24istps 22850 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6348, 62sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6447, 36istps 22850 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6549, 64sylib 218 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
6650, 63, 65xpstopnlem1 23725 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
67 hmeocnv 23678 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) → 𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)))
68 hmeoqtop 23691 . . 3 (𝐹 ∈ ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
6966, 67, 683syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) qTop 𝐹))
7044, 61, 693eqtr4d 2776 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {cpr 4578  cop 4582   × cxp 5614  ccnv 5615  ran crn 5617  ccom 5620  Oncon0 6306   Fn wfn 6476  wf 6477  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  Basecbs 17120  Scalarcsca 17164  TopOpenctopn 17325  tcpt 17342  Xscprds 17349   qTop cqtop 17407   ×s cxps 17410  TopOnctopon 22826  TopSpctps 22848   ×t ctx 23476  Homeochmeo 23669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-topgen 17347  df-pt 17348  df-prds 17351  df-qtop 17411  df-imas 17412  df-xps 17414  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-hmeo 23671
This theorem is referenced by:  xpstopn  23728
  Copyright terms: Public domain W3C validator