Proof of Theorem xpstopnlem2
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
2 | | fvexd 6771 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(Scalar‘𝑅) ∈
V) |
3 | | 2on 8275 |
. . . . . 6
⊢
2o ∈ On |
4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
2o ∈ On) |
5 | | fnpr2o 17185 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
{〈∅, 𝑅〉,
〈1o, 𝑆〉} Fn 2o) |
6 | | eqid 2738 |
. . . . 5
⊢
(TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) |
7 | 1, 2, 4, 5, 6 | prdstopn 22687 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(∏t‘(TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
8 | | topnfn 17053 |
. . . . . . . 8
⊢ TopOpen
Fn V |
9 | | dffn2 6586 |
. . . . . . . . 9
⊢
({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ↔
{〈∅, 𝑅〉,
〈1o, 𝑆〉}:2o⟶V) |
10 | 5, 9 | sylib 217 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
{〈∅, 𝑅〉,
〈1o, 𝑆〉}:2o⟶V) |
11 | | fnfco 6623 |
. . . . . . . 8
⊢ ((TopOpen
Fn V ∧ {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶V)
→ (TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉}) Fn
2o) |
12 | 8, 10, 11 | sylancr 586 |
. . . . . . 7
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉}) Fn
2o) |
13 | | xpsfeq 17191 |
. . . . . . 7
⊢ ((TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉}) Fn 2o →
{〈∅, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅)〉,
〈1o, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o)〉} =
(TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
{〈∅, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅)〉,
〈1o, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o)〉} =
(TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})) |
15 | | 0ex 5226 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
16 | 15 | prid1 4695 |
. . . . . . . . . . 11
⊢ ∅
∈ {∅, 1o} |
17 | | df2o3 8282 |
. . . . . . . . . . 11
⊢
2o = {∅, 1o} |
18 | 16, 17 | eleqtrri 2838 |
. . . . . . . . . 10
⊢ ∅
∈ 2o |
19 | | fvco2 6847 |
. . . . . . . . . 10
⊢
(({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ∧
∅ ∈ 2o) → ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o,
𝑆〉})‘∅) =
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅))) |
20 | 5, 18, 19 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅) =
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅))) |
21 | | fvpr0o 17187 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ TopSp →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘∅) = 𝑅) |
22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘∅) = 𝑅) |
23 | 22 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅)) =
(TopOpen‘𝑅)) |
24 | | xpstopn.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝑅) |
25 | 23, 24 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘∅)) = 𝐽) |
26 | 20, 25 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅) = 𝐽) |
27 | 26 | opeq2d 4808 |
. . . . . . 7
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
〈∅, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅)〉 =
〈∅, 𝐽〉) |
28 | | 1oex 8280 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
29 | 28 | prid2 4696 |
. . . . . . . . . . 11
⊢
1o ∈ {∅, 1o} |
30 | 29, 17 | eleqtrri 2838 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
31 | | fvco2 6847 |
. . . . . . . . . 10
⊢
(({〈∅, 𝑅〉, 〈1o, 𝑆〉} Fn 2o ∧
1o ∈ 2o) → ((TopOpen ∘ {〈∅,
𝑅〉,
〈1o, 𝑆〉})‘1o) =
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o))) |
32 | 5, 30, 31 | sylancl 585 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o) =
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o))) |
33 | | fvpr1o 17188 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ TopSp →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘1o) = 𝑆) |
34 | 33 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
({〈∅, 𝑅〉,
〈1o, 𝑆〉}‘1o) = 𝑆) |
35 | 34 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o)) =
(TopOpen‘𝑆)) |
36 | | xpstopn.k |
. . . . . . . . . 10
⊢ 𝐾 = (TopOpen‘𝑆) |
37 | 35, 36 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘({〈∅, 𝑅〉, 〈1o, 𝑆〉}‘1o)) =
𝐾) |
38 | 32, 37 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o) =
𝐾) |
39 | 38 | opeq2d 4808 |
. . . . . . 7
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
〈1o, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o)〉 =
〈1o, 𝐾〉) |
40 | 27, 39 | preq12d 4674 |
. . . . . 6
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
{〈∅, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘∅)〉,
〈1o, ((TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})‘1o)〉} =
{〈∅, 𝐽〉,
〈1o, 𝐾〉}) |
41 | 14, 40 | eqtr3d 2780 |
. . . . 5
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen
∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉}) = {〈∅, 𝐽〉, 〈1o,
𝐾〉}) |
42 | 41 | fveq2d 6760 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(∏t‘(TopOpen ∘ {〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉})) |
43 | 7, 42 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
(TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉})) |
44 | 43 | oveq1d 7270 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
((TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) qTop ◡𝐹) =
((∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉}) qTop ◡𝐹)) |
45 | | xpstps.t |
. . . 4
⊢ 𝑇 = (𝑅 ×s 𝑆) |
46 | | xpstopnlem.x |
. . . 4
⊢ 𝑋 = (Base‘𝑅) |
47 | | xpstopnlem.y |
. . . 4
⊢ 𝑌 = (Base‘𝑆) |
48 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp) |
49 | | simpr 484 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp) |
50 | | xpstopnlem.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
51 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) |
52 | 45, 46, 47, 48, 49, 50, 51, 1 | xpsval 17198 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (◡𝐹 “s
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o,
𝑆〉}))) |
53 | 45, 46, 47, 48, 49, 50, 51, 1 | xpsrnbas 17199 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 =
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
54 | 50 | xpsff1o2 17197 |
. . . . 5
⊢ 𝐹:(𝑋 × 𝑌)–1-1-onto→ran
𝐹 |
55 | | f1ocnv 6712 |
. . . . 5
⊢ (𝐹:(𝑋 × 𝑌)–1-1-onto→ran
𝐹 → ◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌)) |
56 | 54, 55 | mp1i 13 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌)) |
57 | | f1ofo 6707 |
. . . 4
⊢ (◡𝐹:ran 𝐹–1-1-onto→(𝑋 × 𝑌) → ◡𝐹:ran 𝐹–onto→(𝑋 × 𝑌)) |
58 | 56, 57 | syl 17 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡𝐹:ran 𝐹–onto→(𝑋 × 𝑌)) |
59 | | ovexd 7290 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) →
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o,
𝑆〉}) ∈
V) |
60 | | xpstopn.o |
. . 3
⊢ 𝑂 = (TopOpen‘𝑇) |
61 | 52, 53, 58, 59, 6, 60 | imastopn 22779 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 =
((TopOpen‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) qTop ◡𝐹)) |
62 | 46, 24 | istps 21991 |
. . . . 5
⊢ (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
63 | 48, 62 | sylib 217 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋)) |
64 | 47, 36 | istps 21991 |
. . . . 5
⊢ (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌)) |
65 | 49, 64 | sylib 217 |
. . . 4
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌)) |
66 | 50, 63, 65 | xpstopnlem1 22868 |
. . 3
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{〈∅,
𝐽〉, 〈1o,
𝐾〉}))) |
67 | | hmeocnv 22821 |
. . 3
⊢ (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{〈∅,
𝐽〉, 〈1o,
𝐾〉})) → ◡𝐹 ∈
((∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉})Homeo(𝐽 ×t 𝐾))) |
68 | | hmeoqtop 22834 |
. . 3
⊢ (◡𝐹 ∈
((∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉})Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) =
((∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉}) qTop ◡𝐹)) |
69 | 66, 67, 68 | 3syl 18 |
. 2
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) =
((∏t‘{〈∅, 𝐽〉, 〈1o, 𝐾〉}) qTop ◡𝐹)) |
70 | 44, 61, 69 | 3eqtr4d 2788 |
1
⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) |