| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4897 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22834 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3981 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22831 |
| This theorem is referenced by: en2top 22905 neiptopreu 23053 iscnp3 23164 cnntr 23195 cncnp 23200 isreg2 23297 connsub 23341 iunconnlem 23347 conncompclo 23355 1stccnp 23382 kgenidm 23467 tx1cn 23529 tx2cn 23530 xkoccn 23539 txcnp 23540 ptcnplem 23541 xkoinjcn 23607 idqtop 23626 qtopss 23635 kqfvima 23650 kqsat 23651 kqreglem1 23661 kqreglem2 23662 qtopf1 23736 fbflim 23896 flimcf 23902 flimrest 23903 isflf 23913 fclscf 23945 subgntr 24027 ghmcnp 24035 qustgpopn 24040 qustgplem 24041 tsmsxplem1 24073 tsmsxp 24075 ressusp 24185 mopnss 24367 xrtgioo 24728 lebnumlem2 24894 cfilfcls 25207 iscmet3lem2 25225 dvres3a 25848 dvmptfsum 25912 dvcnvlem 25913 dvcnv 25914 efopn 26600 txomap 33817 cnllysconn 35225 cvmlift2lem9a 35283 icccncfext 45878 dvmptconst 45906 dvmptidg 45908 qndenserrnopnlem 46288 opnvonmbllem2 46624 |
| Copyright terms: Public domain | W3C validator |