MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22865
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4913 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22852 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3996 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926   cuni 4883  cfv 6531  TopOnctopon 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topon 22849
This theorem is referenced by:  en2top  22923  neiptopreu  23071  iscnp3  23182  cnntr  23213  cncnp  23218  isreg2  23315  connsub  23359  iunconnlem  23365  conncompclo  23373  1stccnp  23400  kgenidm  23485  tx1cn  23547  tx2cn  23548  xkoccn  23557  txcnp  23558  ptcnplem  23559  xkoinjcn  23625  idqtop  23644  qtopss  23653  kqfvima  23668  kqsat  23669  kqreglem1  23679  kqreglem2  23680  qtopf1  23754  fbflim  23914  flimcf  23920  flimrest  23921  isflf  23931  fclscf  23963  subgntr  24045  ghmcnp  24053  qustgpopn  24058  qustgplem  24059  tsmsxplem1  24091  tsmsxp  24093  ressusp  24203  mopnss  24385  xrtgioo  24746  lebnumlem2  24912  cfilfcls  25226  iscmet3lem2  25244  dvres3a  25867  dvmptfsum  25931  dvcnvlem  25932  dvcnv  25933  efopn  26619  txomap  33865  cnllysconn  35267  cvmlift2lem9a  35325  icccncfext  45916  dvmptconst  45944  dvmptidg  45946  qndenserrnopnlem  46326  opnvonmbllem2  46662
  Copyright terms: Public domain W3C validator