| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4888 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22799 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3973 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-topon 22796 |
| This theorem is referenced by: en2top 22870 neiptopreu 23018 iscnp3 23129 cnntr 23160 cncnp 23165 isreg2 23262 connsub 23306 iunconnlem 23312 conncompclo 23320 1stccnp 23347 kgenidm 23432 tx1cn 23494 tx2cn 23495 xkoccn 23504 txcnp 23505 ptcnplem 23506 xkoinjcn 23572 idqtop 23591 qtopss 23600 kqfvima 23615 kqsat 23616 kqreglem1 23626 kqreglem2 23627 qtopf1 23701 fbflim 23861 flimcf 23867 flimrest 23868 isflf 23878 fclscf 23910 subgntr 23992 ghmcnp 24000 qustgpopn 24005 qustgplem 24006 tsmsxplem1 24038 tsmsxp 24040 ressusp 24150 mopnss 24332 xrtgioo 24693 lebnumlem2 24859 cfilfcls 25172 iscmet3lem2 25190 dvres3a 25813 dvmptfsum 25877 dvcnvlem 25878 dvcnv 25879 efopn 26565 txomap 33801 cnllysconn 35218 cvmlift2lem9a 35276 icccncfext 45868 dvmptconst 45896 dvmptidg 45898 qndenserrnopnlem 46278 opnvonmbllem2 46614 |
| Copyright terms: Public domain | W3C validator |