| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4887 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22829 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3967 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: en2top 22900 neiptopreu 23048 iscnp3 23159 cnntr 23190 cncnp 23195 isreg2 23292 connsub 23336 iunconnlem 23342 conncompclo 23350 1stccnp 23377 kgenidm 23462 tx1cn 23524 tx2cn 23525 xkoccn 23534 txcnp 23535 ptcnplem 23536 xkoinjcn 23602 idqtop 23621 qtopss 23630 kqfvima 23645 kqsat 23646 kqreglem1 23656 kqreglem2 23657 qtopf1 23731 fbflim 23891 flimcf 23897 flimrest 23898 isflf 23908 fclscf 23940 subgntr 24022 ghmcnp 24030 qustgpopn 24035 qustgplem 24036 tsmsxplem1 24068 tsmsxp 24070 ressusp 24179 mopnss 24361 xrtgioo 24722 lebnumlem2 24888 cfilfcls 25201 iscmet3lem2 25219 dvres3a 25842 dvmptfsum 25906 dvcnvlem 25907 dvcnv 25908 efopn 26594 txomap 33847 cnllysconn 35289 cvmlift2lem9a 35347 icccncfext 45933 dvmptconst 45961 dvmptidg 45963 qndenserrnopnlem 46343 opnvonmbllem2 46679 |
| Copyright terms: Public domain | W3C validator |