Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4871 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
3 | toponuni 22063 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | adantr 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
5 | 2, 4 | sseqtrrd 3962 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: en2top 22135 neiptopreu 22284 iscnp3 22395 cnntr 22426 cncnp 22431 isreg2 22528 connsub 22572 iunconnlem 22578 conncompclo 22586 1stccnp 22613 kgenidm 22698 tx1cn 22760 tx2cn 22761 xkoccn 22770 txcnp 22771 ptcnplem 22772 xkoinjcn 22838 idqtop 22857 qtopss 22866 kqfvima 22881 kqsat 22882 kqreglem1 22892 kqreglem2 22893 qtopf1 22967 fbflim 23127 flimcf 23133 flimrest 23134 isflf 23144 fclscf 23176 subgntr 23258 ghmcnp 23266 qustgpopn 23271 qustgplem 23272 tsmsxplem1 23304 tsmsxp 23306 ressusp 23416 mopnss 23599 xrtgioo 23969 lebnumlem2 24125 cfilfcls 24438 iscmet3lem2 24456 dvres3a 25078 dvmptfsum 25139 dvcnvlem 25140 dvcnv 25141 efopn 25813 txomap 31784 cnllysconn 33207 cvmlift2lem9a 33265 icccncfext 43428 dvmptconst 43456 dvmptidg 43458 qndenserrnopnlem 43838 opnvonmbllem2 44171 |
Copyright terms: Public domain | W3C validator |