MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22954
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4961 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22941 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 4050 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  cfv 6573  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topon 22938
This theorem is referenced by:  en2top  23013  neiptopreu  23162  iscnp3  23273  cnntr  23304  cncnp  23309  isreg2  23406  connsub  23450  iunconnlem  23456  conncompclo  23464  1stccnp  23491  kgenidm  23576  tx1cn  23638  tx2cn  23639  xkoccn  23648  txcnp  23649  ptcnplem  23650  xkoinjcn  23716  idqtop  23735  qtopss  23744  kqfvima  23759  kqsat  23760  kqreglem1  23770  kqreglem2  23771  qtopf1  23845  fbflim  24005  flimcf  24011  flimrest  24012  isflf  24022  fclscf  24054  subgntr  24136  ghmcnp  24144  qustgpopn  24149  qustgplem  24150  tsmsxplem1  24182  tsmsxp  24184  ressusp  24294  mopnss  24477  xrtgioo  24847  lebnumlem2  25013  cfilfcls  25327  iscmet3lem2  25345  dvres3a  25969  dvmptfsum  26033  dvcnvlem  26034  dvcnv  26035  efopn  26718  txomap  33780  cnllysconn  35213  cvmlift2lem9a  35271  icccncfext  45808  dvmptconst  45836  dvmptidg  45838  qndenserrnopnlem  46218  opnvonmbllem2  46554
  Copyright terms: Public domain W3C validator