MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22821
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4904 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22808 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3987 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917   cuni 4874  cfv 6514  TopOnctopon 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topon 22805
This theorem is referenced by:  en2top  22879  neiptopreu  23027  iscnp3  23138  cnntr  23169  cncnp  23174  isreg2  23271  connsub  23315  iunconnlem  23321  conncompclo  23329  1stccnp  23356  kgenidm  23441  tx1cn  23503  tx2cn  23504  xkoccn  23513  txcnp  23514  ptcnplem  23515  xkoinjcn  23581  idqtop  23600  qtopss  23609  kqfvima  23624  kqsat  23625  kqreglem1  23635  kqreglem2  23636  qtopf1  23710  fbflim  23870  flimcf  23876  flimrest  23877  isflf  23887  fclscf  23919  subgntr  24001  ghmcnp  24009  qustgpopn  24014  qustgplem  24015  tsmsxplem1  24047  tsmsxp  24049  ressusp  24159  mopnss  24341  xrtgioo  24702  lebnumlem2  24868  cfilfcls  25181  iscmet3lem2  25199  dvres3a  25822  dvmptfsum  25886  dvcnvlem  25887  dvcnv  25888  efopn  26574  txomap  33831  cnllysconn  35239  cvmlift2lem9a  35297  icccncfext  45892  dvmptconst  45920  dvmptidg  45922  qndenserrnopnlem  46302  opnvonmbllem2  46638
  Copyright terms: Public domain W3C validator