Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4868 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
3 | toponuni 21971 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
5 | 2, 4 | sseqtrrd 3958 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: en2top 22043 neiptopreu 22192 iscnp3 22303 cnntr 22334 cncnp 22339 isreg2 22436 connsub 22480 iunconnlem 22486 conncompclo 22494 1stccnp 22521 kgenidm 22606 tx1cn 22668 tx2cn 22669 xkoccn 22678 txcnp 22679 ptcnplem 22680 xkoinjcn 22746 idqtop 22765 qtopss 22774 kqfvima 22789 kqsat 22790 kqreglem1 22800 kqreglem2 22801 qtopf1 22875 fbflim 23035 flimcf 23041 flimrest 23042 isflf 23052 fclscf 23084 subgntr 23166 ghmcnp 23174 qustgpopn 23179 qustgplem 23180 tsmsxplem1 23212 tsmsxp 23214 ressusp 23324 mopnss 23507 xrtgioo 23875 lebnumlem2 24031 cfilfcls 24343 iscmet3lem2 24361 dvres3a 24983 dvmptfsum 25044 dvcnvlem 25045 dvcnv 25046 efopn 25718 txomap 31686 cnllysconn 33107 cvmlift2lem9a 33165 icccncfext 43318 dvmptconst 43346 dvmptidg 43348 qndenserrnopnlem 43728 opnvonmbllem2 44061 |
Copyright terms: Public domain | W3C validator |