| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4913 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22852 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3996 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6531 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-topon 22849 |
| This theorem is referenced by: en2top 22923 neiptopreu 23071 iscnp3 23182 cnntr 23213 cncnp 23218 isreg2 23315 connsub 23359 iunconnlem 23365 conncompclo 23373 1stccnp 23400 kgenidm 23485 tx1cn 23547 tx2cn 23548 xkoccn 23557 txcnp 23558 ptcnplem 23559 xkoinjcn 23625 idqtop 23644 qtopss 23653 kqfvima 23668 kqsat 23669 kqreglem1 23679 kqreglem2 23680 qtopf1 23754 fbflim 23914 flimcf 23920 flimrest 23921 isflf 23931 fclscf 23963 subgntr 24045 ghmcnp 24053 qustgpopn 24058 qustgplem 24059 tsmsxplem1 24091 tsmsxp 24093 ressusp 24203 mopnss 24385 xrtgioo 24746 lebnumlem2 24912 cfilfcls 25226 iscmet3lem2 25244 dvres3a 25867 dvmptfsum 25931 dvcnvlem 25932 dvcnv 25933 efopn 26619 txomap 33865 cnllysconn 35267 cvmlift2lem9a 35325 icccncfext 45916 dvmptconst 45944 dvmptidg 45946 qndenserrnopnlem 46326 opnvonmbllem2 46662 |
| Copyright terms: Public domain | W3C validator |