![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4961 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
3 | toponuni 22941 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
5 | 2, 4 | sseqtrrd 4050 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: en2top 23013 neiptopreu 23162 iscnp3 23273 cnntr 23304 cncnp 23309 isreg2 23406 connsub 23450 iunconnlem 23456 conncompclo 23464 1stccnp 23491 kgenidm 23576 tx1cn 23638 tx2cn 23639 xkoccn 23648 txcnp 23649 ptcnplem 23650 xkoinjcn 23716 idqtop 23735 qtopss 23744 kqfvima 23759 kqsat 23760 kqreglem1 23770 kqreglem2 23771 qtopf1 23845 fbflim 24005 flimcf 24011 flimrest 24012 isflf 24022 fclscf 24054 subgntr 24136 ghmcnp 24144 qustgpopn 24149 qustgplem 24150 tsmsxplem1 24182 tsmsxp 24184 ressusp 24294 mopnss 24477 xrtgioo 24847 lebnumlem2 25013 cfilfcls 25327 iscmet3lem2 25345 dvres3a 25969 dvmptfsum 26033 dvcnvlem 26034 dvcnv 26035 efopn 26718 txomap 33780 cnllysconn 35213 cvmlift2lem9a 35271 icccncfext 45808 dvmptconst 45836 dvmptidg 45838 qndenserrnopnlem 46218 opnvonmbllem2 46554 |
Copyright terms: Public domain | W3C validator |