MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 21984
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4868 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 21971 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3958 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  cfv 6418  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topon 21968
This theorem is referenced by:  en2top  22043  neiptopreu  22192  iscnp3  22303  cnntr  22334  cncnp  22339  isreg2  22436  connsub  22480  iunconnlem  22486  conncompclo  22494  1stccnp  22521  kgenidm  22606  tx1cn  22668  tx2cn  22669  xkoccn  22678  txcnp  22679  ptcnplem  22680  xkoinjcn  22746  idqtop  22765  qtopss  22774  kqfvima  22789  kqsat  22790  kqreglem1  22800  kqreglem2  22801  qtopf1  22875  fbflim  23035  flimcf  23041  flimrest  23042  isflf  23052  fclscf  23084  subgntr  23166  ghmcnp  23174  qustgpopn  23179  qustgplem  23180  tsmsxplem1  23212  tsmsxp  23214  ressusp  23324  mopnss  23507  xrtgioo  23875  lebnumlem2  24031  cfilfcls  24343  iscmet3lem2  24361  dvres3a  24983  dvmptfsum  25044  dvcnvlem  25045  dvcnv  25046  efopn  25718  txomap  31686  cnllysconn  33107  cvmlift2lem9a  33165  icccncfext  43318  dvmptconst  43346  dvmptidg  43348  qndenserrnopnlem  43728  opnvonmbllem2  44061
  Copyright terms: Public domain W3C validator