![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4737 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1 | adantl 474 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
3 | toponuni 21238 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | adantr 473 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
5 | 2, 4 | sseqtr4d 3892 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⊆ wss 3823 ∪ cuni 4708 ‘cfv 6185 TopOnctopon 21234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-topon 21235 |
This theorem is referenced by: en2top 21309 neiptopreu 21457 iscnp3 21568 cnntr 21599 cncnp 21604 isreg2 21701 connsub 21745 iunconnlem 21751 conncompclo 21759 1stccnp 21786 kgenidm 21871 tx1cn 21933 tx2cn 21934 xkoccn 21943 txcnp 21944 ptcnplem 21945 xkoinjcn 22011 idqtop 22030 qtopss 22039 kqfvima 22054 kqsat 22055 kqreglem1 22065 kqreglem2 22066 qtopf1 22140 fbflim 22300 flimcf 22306 flimrest 22307 isflf 22317 fclscf 22349 subgntr 22430 ghmcnp 22438 qustgpopn 22443 qustgplem 22444 tsmsxplem1 22476 tsmsxp 22478 ressusp 22589 mopnss 22771 xrtgioo 23129 lebnumlem2 23281 cfilfcls 23592 iscmet3lem2 23610 dvres3a 24227 dvmptfsum 24287 dvcnvlem 24288 dvcnv 24289 efopn 24954 txomap 30771 cnllysconn 32106 cvmlift2lem9a 32164 icccncfext 41625 dvmptconst 41654 dvmptidg 41656 qndenserrnopnlem 42038 opnvonmbllem2 42371 |
Copyright terms: Public domain | W3C validator |