| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4897 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22777 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3981 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 TopOnctopon 22773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22774 |
| This theorem is referenced by: en2top 22848 neiptopreu 22996 iscnp3 23107 cnntr 23138 cncnp 23143 isreg2 23240 connsub 23284 iunconnlem 23290 conncompclo 23298 1stccnp 23325 kgenidm 23410 tx1cn 23472 tx2cn 23473 xkoccn 23482 txcnp 23483 ptcnplem 23484 xkoinjcn 23550 idqtop 23569 qtopss 23578 kqfvima 23593 kqsat 23594 kqreglem1 23604 kqreglem2 23605 qtopf1 23679 fbflim 23839 flimcf 23845 flimrest 23846 isflf 23856 fclscf 23888 subgntr 23970 ghmcnp 23978 qustgpopn 23983 qustgplem 23984 tsmsxplem1 24016 tsmsxp 24018 ressusp 24128 mopnss 24310 xrtgioo 24671 lebnumlem2 24837 cfilfcls 25150 iscmet3lem2 25168 dvres3a 25791 dvmptfsum 25855 dvcnvlem 25856 dvcnv 25857 efopn 26543 txomap 33797 cnllysconn 35205 cvmlift2lem9a 35263 icccncfext 45858 dvmptconst 45886 dvmptidg 45888 qndenserrnopnlem 46268 opnvonmbllem2 46604 |
| Copyright terms: Public domain | W3C validator |