Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4890 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
3 | toponuni 22169 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
4 | 3 | adantr 482 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
5 | 2, 4 | sseqtrrd 3977 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⊆ wss 3902 ∪ cuni 4857 ‘cfv 6484 TopOnctopon 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-iota 6436 df-fun 6486 df-fv 6492 df-topon 22166 |
This theorem is referenced by: en2top 22241 neiptopreu 22390 iscnp3 22501 cnntr 22532 cncnp 22537 isreg2 22634 connsub 22678 iunconnlem 22684 conncompclo 22692 1stccnp 22719 kgenidm 22804 tx1cn 22866 tx2cn 22867 xkoccn 22876 txcnp 22877 ptcnplem 22878 xkoinjcn 22944 idqtop 22963 qtopss 22972 kqfvima 22987 kqsat 22988 kqreglem1 22998 kqreglem2 22999 qtopf1 23073 fbflim 23233 flimcf 23239 flimrest 23240 isflf 23250 fclscf 23282 subgntr 23364 ghmcnp 23372 qustgpopn 23377 qustgplem 23378 tsmsxplem1 23410 tsmsxp 23412 ressusp 23522 mopnss 23705 xrtgioo 24075 lebnumlem2 24231 cfilfcls 24544 iscmet3lem2 24562 dvres3a 25184 dvmptfsum 25245 dvcnvlem 25246 dvcnv 25247 efopn 25919 txomap 32080 cnllysconn 33504 cvmlift2lem9a 33562 icccncfext 43814 dvmptconst 43842 dvmptidg 43844 qndenserrnopnlem 44224 opnvonmbllem2 44558 |
Copyright terms: Public domain | W3C validator |