| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4901 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22801 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3984 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: en2top 22872 neiptopreu 23020 iscnp3 23131 cnntr 23162 cncnp 23167 isreg2 23264 connsub 23308 iunconnlem 23314 conncompclo 23322 1stccnp 23349 kgenidm 23434 tx1cn 23496 tx2cn 23497 xkoccn 23506 txcnp 23507 ptcnplem 23508 xkoinjcn 23574 idqtop 23593 qtopss 23602 kqfvima 23617 kqsat 23618 kqreglem1 23628 kqreglem2 23629 qtopf1 23703 fbflim 23863 flimcf 23869 flimrest 23870 isflf 23880 fclscf 23912 subgntr 23994 ghmcnp 24002 qustgpopn 24007 qustgplem 24008 tsmsxplem1 24040 tsmsxp 24042 ressusp 24152 mopnss 24334 xrtgioo 24695 lebnumlem2 24861 cfilfcls 25174 iscmet3lem2 25192 dvres3a 25815 dvmptfsum 25879 dvcnvlem 25880 dvcnv 25881 efopn 26567 txomap 33824 cnllysconn 35232 cvmlift2lem9a 35290 icccncfext 45885 dvmptconst 45913 dvmptidg 45915 qndenserrnopnlem 46295 opnvonmbllem2 46631 |
| Copyright terms: Public domain | W3C validator |