MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22814
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4901 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22801 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3984 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  cfv 6511  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-topon 22798
This theorem is referenced by:  en2top  22872  neiptopreu  23020  iscnp3  23131  cnntr  23162  cncnp  23167  isreg2  23264  connsub  23308  iunconnlem  23314  conncompclo  23322  1stccnp  23349  kgenidm  23434  tx1cn  23496  tx2cn  23497  xkoccn  23506  txcnp  23507  ptcnplem  23508  xkoinjcn  23574  idqtop  23593  qtopss  23602  kqfvima  23617  kqsat  23618  kqreglem1  23628  kqreglem2  23629  qtopf1  23703  fbflim  23863  flimcf  23869  flimrest  23870  isflf  23880  fclscf  23912  subgntr  23994  ghmcnp  24002  qustgpopn  24007  qustgplem  24008  tsmsxplem1  24040  tsmsxp  24042  ressusp  24152  mopnss  24334  xrtgioo  24695  lebnumlem2  24861  cfilfcls  25174  iscmet3lem2  25192  dvres3a  25815  dvmptfsum  25879  dvcnvlem  25880  dvcnv  25881  efopn  26567  txomap  33824  cnllysconn  35232  cvmlift2lem9a  35290  icccncfext  45885  dvmptconst  45913  dvmptidg  45915  qndenserrnopnlem  46295  opnvonmbllem2  46631
  Copyright terms: Public domain W3C validator