MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22847
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4897 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22834 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3981 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911   cuni 4867  cfv 6499  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topon 22831
This theorem is referenced by:  en2top  22905  neiptopreu  23053  iscnp3  23164  cnntr  23195  cncnp  23200  isreg2  23297  connsub  23341  iunconnlem  23347  conncompclo  23355  1stccnp  23382  kgenidm  23467  tx1cn  23529  tx2cn  23530  xkoccn  23539  txcnp  23540  ptcnplem  23541  xkoinjcn  23607  idqtop  23626  qtopss  23635  kqfvima  23650  kqsat  23651  kqreglem1  23661  kqreglem2  23662  qtopf1  23736  fbflim  23896  flimcf  23902  flimrest  23903  isflf  23913  fclscf  23945  subgntr  24027  ghmcnp  24035  qustgpopn  24040  qustgplem  24041  tsmsxplem1  24073  tsmsxp  24075  ressusp  24185  mopnss  24367  xrtgioo  24728  lebnumlem2  24894  cfilfcls  25207  iscmet3lem2  25225  dvres3a  25848  dvmptfsum  25912  dvcnvlem  25913  dvcnv  25914  efopn  26600  txomap  33817  cnllysconn  35225  cvmlift2lem9a  35283  icccncfext  45878  dvmptconst  45906  dvmptidg  45908  qndenserrnopnlem  46288  opnvonmbllem2  46624
  Copyright terms: Public domain W3C validator