MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22076
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4871 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 482 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22063 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3962 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887   cuni 4839  cfv 6433  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topon 22060
This theorem is referenced by:  en2top  22135  neiptopreu  22284  iscnp3  22395  cnntr  22426  cncnp  22431  isreg2  22528  connsub  22572  iunconnlem  22578  conncompclo  22586  1stccnp  22613  kgenidm  22698  tx1cn  22760  tx2cn  22761  xkoccn  22770  txcnp  22771  ptcnplem  22772  xkoinjcn  22838  idqtop  22857  qtopss  22866  kqfvima  22881  kqsat  22882  kqreglem1  22892  kqreglem2  22893  qtopf1  22967  fbflim  23127  flimcf  23133  flimrest  23134  isflf  23144  fclscf  23176  subgntr  23258  ghmcnp  23266  qustgpopn  23271  qustgplem  23272  tsmsxplem1  23304  tsmsxp  23306  ressusp  23416  mopnss  23599  xrtgioo  23969  lebnumlem2  24125  cfilfcls  24438  iscmet3lem2  24456  dvres3a  25078  dvmptfsum  25139  dvcnvlem  25140  dvcnv  25141  efopn  25813  txomap  31784  cnllysconn  33207  cvmlift2lem9a  33265  icccncfext  43428  dvmptconst  43456  dvmptidg  43458  qndenserrnopnlem  43838  opnvonmbllem2  44171
  Copyright terms: Public domain W3C validator