MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponss Structured version   Visualization version   GIF version

Theorem toponss 22790
Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
toponss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem toponss
StepHypRef Expression
1 elssuni 4897 . . 3 (𝐴𝐽𝐴 𝐽)
21adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴 𝐽)
3 toponuni 22777 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
43adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝑋 = 𝐽)
52, 4sseqtrrd 3981 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911   cuni 4867  cfv 6499  TopOnctopon 22773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topon 22774
This theorem is referenced by:  en2top  22848  neiptopreu  22996  iscnp3  23107  cnntr  23138  cncnp  23143  isreg2  23240  connsub  23284  iunconnlem  23290  conncompclo  23298  1stccnp  23325  kgenidm  23410  tx1cn  23472  tx2cn  23473  xkoccn  23482  txcnp  23483  ptcnplem  23484  xkoinjcn  23550  idqtop  23569  qtopss  23578  kqfvima  23593  kqsat  23594  kqreglem1  23604  kqreglem2  23605  qtopf1  23679  fbflim  23839  flimcf  23845  flimrest  23846  isflf  23856  fclscf  23888  subgntr  23970  ghmcnp  23978  qustgpopn  23983  qustgplem  23984  tsmsxplem1  24016  tsmsxp  24018  ressusp  24128  mopnss  24310  xrtgioo  24671  lebnumlem2  24837  cfilfcls  25150  iscmet3lem2  25168  dvres3a  25791  dvmptfsum  25855  dvcnvlem  25856  dvcnv  25857  efopn  26543  txomap  33797  cnllysconn  35205  cvmlift2lem9a  35263  icccncfext  45858  dvmptconst  45886  dvmptidg  45888  qndenserrnopnlem  46268  opnvonmbllem2  46604
  Copyright terms: Public domain W3C validator