| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponss | Structured version Visualization version GIF version | ||
| Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4904 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ ∪ 𝐽) |
| 3 | toponuni 22808 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝑋 = ∪ 𝐽) |
| 5 | 2, 4 | sseqtrrd 3987 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: en2top 22879 neiptopreu 23027 iscnp3 23138 cnntr 23169 cncnp 23174 isreg2 23271 connsub 23315 iunconnlem 23321 conncompclo 23329 1stccnp 23356 kgenidm 23441 tx1cn 23503 tx2cn 23504 xkoccn 23513 txcnp 23514 ptcnplem 23515 xkoinjcn 23581 idqtop 23600 qtopss 23609 kqfvima 23624 kqsat 23625 kqreglem1 23635 kqreglem2 23636 qtopf1 23710 fbflim 23870 flimcf 23876 flimrest 23877 isflf 23887 fclscf 23919 subgntr 24001 ghmcnp 24009 qustgpopn 24014 qustgplem 24015 tsmsxplem1 24047 tsmsxp 24049 ressusp 24159 mopnss 24341 xrtgioo 24702 lebnumlem2 24868 cfilfcls 25181 iscmet3lem2 25199 dvres3a 25822 dvmptfsum 25886 dvcnvlem 25887 dvcnv 25888 efopn 26574 txomap 33831 cnllysconn 35239 cvmlift2lem9a 35297 icccncfext 45892 dvmptconst 45920 dvmptidg 45922 qndenserrnopnlem 46302 opnvonmbllem2 46638 |
| Copyright terms: Public domain | W3C validator |