| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22799 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: toponunii 22803 toponmax 22813 toponss 22814 toponcom 22815 topgele 22817 topontopn 22827 toponmre 22980 cldmreon 22981 restuni 23049 resttopon2 23055 restlp 23070 restperf 23071 perfopn 23072 ordtcld1 23084 ordtcld2 23085 lmfval 23119 cnfval 23120 cnpfval 23121 cnpf2 23137 cnprcl2 23138 ssidcn 23142 iscnp4 23150 iscncl 23156 cncls2 23160 cncls 23161 cnntr 23162 cncnp 23167 lmcls 23189 lmcld 23190 iscnrm2 23225 ist0-2 23231 ist1-2 23234 ishaus2 23238 isreg2 23264 ordtt1 23266 sscmp 23292 dfconn2 23306 clsconn 23317 conncompcld 23321 1stccnp 23349 locfincf 23418 kgenval 23422 kgenuni 23426 1stckgenlem 23440 kgen2ss 23442 kgencn2 23444 txtopon 23478 txuni 23479 pttopon 23483 ptuniconst 23485 txcls 23491 ptclsg 23502 dfac14lem 23504 xkoccn 23506 ptcnplem 23508 ptcn 23514 cnmpt1t 23552 cnmpt2t 23560 cnmpt1res 23563 cnmpt2res 23564 cnmptkp 23567 cnmptk1p 23572 cnmptk2 23573 xkoinjcn 23574 elqtop3 23590 qtoptopon 23591 qtopcld 23600 qtoprest 23604 qtopcmap 23606 kqval 23613 kqcldsat 23620 isr0 23624 r0cld 23625 regr1lem 23626 kqnrmlem1 23630 kqnrmlem2 23631 pt1hmeo 23693 xpstopnlem1 23696 neifil 23767 trnei 23779 elflim 23858 flimss2 23859 flimss1 23860 flimopn 23862 fbflim2 23864 flimclslem 23871 flffval 23876 flfnei 23878 cnpflf2 23887 cnflf 23889 cnflf2 23890 isfcls2 23900 fclsopn 23901 fclsnei 23906 fclscmp 23917 ufilcmp 23919 fcfval 23920 fcfnei 23922 fcfelbas 23923 cnpfcf 23928 cnfcf 23929 alexsublem 23931 tmdcn2 23976 tmdgsum 23982 tmdgsum2 23983 symgtgp 23993 subgntr 23994 opnsubg 23995 clssubg 23996 clsnsg 23997 cldsubg 23998 tgpconncompeqg 23999 tgpconncomp 24000 ghmcnp 24002 snclseqg 24003 tgphaus 24004 tgpt1 24005 prdstmdd 24011 prdstgpd 24012 tsmsgsum 24026 tsmsid 24027 tsmsmhm 24033 tsmsadd 24034 tgptsmscld 24038 utop3cls 24139 mopnuni 24329 isxms2 24336 prdsxmslem2 24417 metdseq0 24743 cnmpopc 24822 ishtpy 24871 om1val 24930 pi1val 24937 csscld 25149 clsocv 25150 cfilfcls 25174 relcmpcmet 25218 limcres 25787 limccnp 25792 limccnp2 25793 dvbss 25802 perfdvf 25804 dvreslem 25810 dvres2lem 25811 dvcnp2 25821 dvcnp2OLD 25822 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcmulf 25848 dvmptres2 25866 dvmptcmul 25868 dvmptntr 25875 dvcnvrelem2 25923 ftc1cn 25950 taylthlem1 26281 ulmdvlem3 26311 efrlim 26879 efrlimOLD 26880 zart0 33869 zarmxt1 33870 pl1cn 33945 cvxpconn 35229 cvxsconn 35230 ivthALT 36323 neibastop2 36349 neibastop3 36350 topmeet 36352 topjoin 36353 refsum2cnlem1 45031 dvresntr 45916 rrxunitopnfi 46290 |
| Copyright terms: Public domain | W3C validator |