| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22830 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 ‘cfv 6488 Topctop 22811 TopOnctopon 22828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-topon 22829 |
| This theorem is referenced by: toponunii 22834 toponmax 22844 toponss 22845 toponcom 22846 topgele 22848 topontopn 22858 toponmre 23011 cldmreon 23012 restuni 23080 resttopon2 23086 restlp 23101 restperf 23102 perfopn 23103 ordtcld1 23115 ordtcld2 23116 lmfval 23150 cnfval 23151 cnpfval 23152 cnpf2 23168 cnprcl2 23169 ssidcn 23173 iscnp4 23181 iscncl 23187 cncls2 23191 cncls 23192 cnntr 23193 cncnp 23198 lmcls 23220 lmcld 23221 iscnrm2 23256 ist0-2 23262 ist1-2 23265 ishaus2 23269 isreg2 23295 ordtt1 23297 sscmp 23323 dfconn2 23337 clsconn 23348 conncompcld 23352 1stccnp 23380 locfincf 23449 kgenval 23453 kgenuni 23457 1stckgenlem 23471 kgen2ss 23473 kgencn2 23475 txtopon 23509 txuni 23510 pttopon 23514 ptuniconst 23516 txcls 23522 ptclsg 23533 dfac14lem 23535 xkoccn 23537 ptcnplem 23539 ptcn 23545 cnmpt1t 23583 cnmpt2t 23591 cnmpt1res 23594 cnmpt2res 23595 cnmptkp 23598 cnmptk1p 23603 cnmptk2 23604 xkoinjcn 23605 elqtop3 23621 qtoptopon 23622 qtopcld 23631 qtoprest 23635 qtopcmap 23637 kqval 23644 kqcldsat 23651 isr0 23655 r0cld 23656 regr1lem 23657 kqnrmlem1 23661 kqnrmlem2 23662 pt1hmeo 23724 xpstopnlem1 23727 neifil 23798 trnei 23810 elflim 23889 flimss2 23890 flimss1 23891 flimopn 23893 fbflim2 23895 flimclslem 23902 flffval 23907 flfnei 23909 cnpflf2 23918 cnflf 23920 cnflf2 23921 isfcls2 23931 fclsopn 23932 fclsnei 23937 fclscmp 23948 ufilcmp 23950 fcfval 23951 fcfnei 23953 fcfelbas 23954 cnpfcf 23959 cnfcf 23960 alexsublem 23962 tmdcn2 24007 tmdgsum 24013 tmdgsum2 24014 symgtgp 24024 subgntr 24025 opnsubg 24026 clssubg 24027 clsnsg 24028 cldsubg 24029 tgpconncompeqg 24030 tgpconncomp 24031 ghmcnp 24033 snclseqg 24034 tgphaus 24035 tgpt1 24036 prdstmdd 24042 prdstgpd 24043 tsmsgsum 24057 tsmsid 24058 tsmsmhm 24064 tsmsadd 24065 tgptsmscld 24069 utop3cls 24169 mopnuni 24359 isxms2 24366 prdsxmslem2 24447 metdseq0 24773 cnmpopc 24852 ishtpy 24901 om1val 24960 pi1val 24967 csscld 25179 clsocv 25180 cfilfcls 25204 relcmpcmet 25248 limcres 25817 limccnp 25822 limccnp2 25823 dvbss 25832 perfdvf 25834 dvreslem 25840 dvres2lem 25841 dvcnp2 25851 dvcnp2OLD 25852 dvaddbr 25870 dvmulbr 25871 dvmulbrOLD 25872 dvcmulf 25878 dvmptres2 25896 dvmptcmul 25898 dvmptntr 25905 dvcnvrelem2 25953 ftc1cn 25980 taylthlem1 26311 ulmdvlem3 26341 efrlim 26909 efrlimOLD 26910 zart0 33915 zarmxt1 33916 pl1cn 33991 cvxpconn 35309 cvxsconn 35310 ivthALT 36402 neibastop2 36428 neibastop3 36429 topmeet 36431 topjoin 36432 refsum2cnlem1 45161 dvresntr 46043 rrxunitopnfi 46417 |
| Copyright terms: Public domain | W3C validator |