![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22939 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: toponunii 22943 toponmax 22953 toponss 22954 toponcom 22955 topgele 22957 topontopn 22967 toponmre 23122 cldmreon 23123 restuni 23191 resttopon2 23197 restlp 23212 restperf 23213 perfopn 23214 ordtcld1 23226 ordtcld2 23227 lmfval 23261 cnfval 23262 cnpfval 23263 cnpf2 23279 cnprcl2 23280 ssidcn 23284 iscnp4 23292 iscncl 23298 cncls2 23302 cncls 23303 cnntr 23304 cncnp 23309 lmcls 23331 lmcld 23332 iscnrm2 23367 ist0-2 23373 ist1-2 23376 ishaus2 23380 isreg2 23406 ordtt1 23408 sscmp 23434 dfconn2 23448 clsconn 23459 conncompcld 23463 1stccnp 23491 locfincf 23560 kgenval 23564 kgenuni 23568 1stckgenlem 23582 kgen2ss 23584 kgencn2 23586 txtopon 23620 txuni 23621 pttopon 23625 ptuniconst 23627 txcls 23633 ptclsg 23644 dfac14lem 23646 xkoccn 23648 ptcnplem 23650 ptcn 23656 cnmpt1t 23694 cnmpt2t 23702 cnmpt1res 23705 cnmpt2res 23706 cnmptkp 23709 cnmptk1p 23714 cnmptk2 23715 xkoinjcn 23716 elqtop3 23732 qtoptopon 23733 qtopcld 23742 qtoprest 23746 qtopcmap 23748 kqval 23755 kqcldsat 23762 isr0 23766 r0cld 23767 regr1lem 23768 kqnrmlem1 23772 kqnrmlem2 23773 pt1hmeo 23835 xpstopnlem1 23838 neifil 23909 trnei 23921 elflim 24000 flimss2 24001 flimss1 24002 flimopn 24004 fbflim2 24006 flimclslem 24013 flffval 24018 flfnei 24020 cnpflf2 24029 cnflf 24031 cnflf2 24032 isfcls2 24042 fclsopn 24043 fclsnei 24048 fclscmp 24059 ufilcmp 24061 fcfval 24062 fcfnei 24064 fcfelbas 24065 cnpfcf 24070 cnfcf 24071 alexsublem 24073 tmdcn2 24118 tmdgsum 24124 tmdgsum2 24125 symgtgp 24135 subgntr 24136 opnsubg 24137 clssubg 24138 clsnsg 24139 cldsubg 24140 tgpconncompeqg 24141 tgpconncomp 24142 ghmcnp 24144 snclseqg 24145 tgphaus 24146 tgpt1 24147 prdstmdd 24153 prdstgpd 24154 tsmsgsum 24168 tsmsid 24169 tsmsmhm 24175 tsmsadd 24176 tgptsmscld 24180 utop3cls 24281 mopnuni 24472 isxms2 24479 prdsxmslem2 24563 metdseq0 24895 cnmpopc 24974 ishtpy 25023 om1val 25082 pi1val 25089 csscld 25302 clsocv 25303 cfilfcls 25327 relcmpcmet 25371 limcres 25941 limccnp 25946 limccnp2 25947 dvbss 25956 perfdvf 25958 dvreslem 25964 dvres2lem 25965 dvcnp2 25975 dvcnp2OLD 25976 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcmulf 26002 dvmptres2 26020 dvmptcmul 26022 dvmptntr 26029 dvcnvrelem2 26077 ftc1cn 26104 taylthlem1 26433 ulmdvlem3 26463 efrlim 27030 efrlimOLD 27031 zart0 33825 zarmxt1 33826 pl1cn 33901 cvxpconn 35210 cvxsconn 35211 ivthALT 36301 neibastop2 36327 neibastop3 36328 topmeet 36330 topjoin 36331 refsum2cnlem1 44937 dvresntr 45839 rrxunitopnfi 46213 |
Copyright terms: Public domain | W3C validator |