| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22806 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: toponunii 22810 toponmax 22820 toponss 22821 toponcom 22822 topgele 22824 topontopn 22834 toponmre 22987 cldmreon 22988 restuni 23056 resttopon2 23062 restlp 23077 restperf 23078 perfopn 23079 ordtcld1 23091 ordtcld2 23092 lmfval 23126 cnfval 23127 cnpfval 23128 cnpf2 23144 cnprcl2 23145 ssidcn 23149 iscnp4 23157 iscncl 23163 cncls2 23167 cncls 23168 cnntr 23169 cncnp 23174 lmcls 23196 lmcld 23197 iscnrm2 23232 ist0-2 23238 ist1-2 23241 ishaus2 23245 isreg2 23271 ordtt1 23273 sscmp 23299 dfconn2 23313 clsconn 23324 conncompcld 23328 1stccnp 23356 locfincf 23425 kgenval 23429 kgenuni 23433 1stckgenlem 23447 kgen2ss 23449 kgencn2 23451 txtopon 23485 txuni 23486 pttopon 23490 ptuniconst 23492 txcls 23498 ptclsg 23509 dfac14lem 23511 xkoccn 23513 ptcnplem 23515 ptcn 23521 cnmpt1t 23559 cnmpt2t 23567 cnmpt1res 23570 cnmpt2res 23571 cnmptkp 23574 cnmptk1p 23579 cnmptk2 23580 xkoinjcn 23581 elqtop3 23597 qtoptopon 23598 qtopcld 23607 qtoprest 23611 qtopcmap 23613 kqval 23620 kqcldsat 23627 isr0 23631 r0cld 23632 regr1lem 23633 kqnrmlem1 23637 kqnrmlem2 23638 pt1hmeo 23700 xpstopnlem1 23703 neifil 23774 trnei 23786 elflim 23865 flimss2 23866 flimss1 23867 flimopn 23869 fbflim2 23871 flimclslem 23878 flffval 23883 flfnei 23885 cnpflf2 23894 cnflf 23896 cnflf2 23897 isfcls2 23907 fclsopn 23908 fclsnei 23913 fclscmp 23924 ufilcmp 23926 fcfval 23927 fcfnei 23929 fcfelbas 23930 cnpfcf 23935 cnfcf 23936 alexsublem 23938 tmdcn2 23983 tmdgsum 23989 tmdgsum2 23990 symgtgp 24000 subgntr 24001 opnsubg 24002 clssubg 24003 clsnsg 24004 cldsubg 24005 tgpconncompeqg 24006 tgpconncomp 24007 ghmcnp 24009 snclseqg 24010 tgphaus 24011 tgpt1 24012 prdstmdd 24018 prdstgpd 24019 tsmsgsum 24033 tsmsid 24034 tsmsmhm 24040 tsmsadd 24041 tgptsmscld 24045 utop3cls 24146 mopnuni 24336 isxms2 24343 prdsxmslem2 24424 metdseq0 24750 cnmpopc 24829 ishtpy 24878 om1val 24937 pi1val 24944 csscld 25156 clsocv 25157 cfilfcls 25181 relcmpcmet 25225 limcres 25794 limccnp 25799 limccnp2 25800 dvbss 25809 perfdvf 25811 dvreslem 25817 dvres2lem 25818 dvcnp2 25828 dvcnp2OLD 25829 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcmulf 25855 dvmptres2 25873 dvmptcmul 25875 dvmptntr 25882 dvcnvrelem2 25930 ftc1cn 25957 taylthlem1 26288 ulmdvlem3 26318 efrlim 26886 efrlimOLD 26887 zart0 33876 zarmxt1 33877 pl1cn 33952 cvxpconn 35236 cvxsconn 35237 ivthALT 36330 neibastop2 36356 neibastop3 36357 topmeet 36359 topjoin 36360 refsum2cnlem1 45038 dvresntr 45923 rrxunitopnfi 46297 |
| Copyright terms: Public domain | W3C validator |