| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22850 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-topon 22849 |
| This theorem is referenced by: toponunii 22854 toponmax 22864 toponss 22865 toponcom 22866 topgele 22868 topontopn 22878 toponmre 23031 cldmreon 23032 restuni 23100 resttopon2 23106 restlp 23121 restperf 23122 perfopn 23123 ordtcld1 23135 ordtcld2 23136 lmfval 23170 cnfval 23171 cnpfval 23172 cnpf2 23188 cnprcl2 23189 ssidcn 23193 iscnp4 23201 iscncl 23207 cncls2 23211 cncls 23212 cnntr 23213 cncnp 23218 lmcls 23240 lmcld 23241 iscnrm2 23276 ist0-2 23282 ist1-2 23285 ishaus2 23289 isreg2 23315 ordtt1 23317 sscmp 23343 dfconn2 23357 clsconn 23368 conncompcld 23372 1stccnp 23400 locfincf 23469 kgenval 23473 kgenuni 23477 1stckgenlem 23491 kgen2ss 23493 kgencn2 23495 txtopon 23529 txuni 23530 pttopon 23534 ptuniconst 23536 txcls 23542 ptclsg 23553 dfac14lem 23555 xkoccn 23557 ptcnplem 23559 ptcn 23565 cnmpt1t 23603 cnmpt2t 23611 cnmpt1res 23614 cnmpt2res 23615 cnmptkp 23618 cnmptk1p 23623 cnmptk2 23624 xkoinjcn 23625 elqtop3 23641 qtoptopon 23642 qtopcld 23651 qtoprest 23655 qtopcmap 23657 kqval 23664 kqcldsat 23671 isr0 23675 r0cld 23676 regr1lem 23677 kqnrmlem1 23681 kqnrmlem2 23682 pt1hmeo 23744 xpstopnlem1 23747 neifil 23818 trnei 23830 elflim 23909 flimss2 23910 flimss1 23911 flimopn 23913 fbflim2 23915 flimclslem 23922 flffval 23927 flfnei 23929 cnpflf2 23938 cnflf 23940 cnflf2 23941 isfcls2 23951 fclsopn 23952 fclsnei 23957 fclscmp 23968 ufilcmp 23970 fcfval 23971 fcfnei 23973 fcfelbas 23974 cnpfcf 23979 cnfcf 23980 alexsublem 23982 tmdcn2 24027 tmdgsum 24033 tmdgsum2 24034 symgtgp 24044 subgntr 24045 opnsubg 24046 clssubg 24047 clsnsg 24048 cldsubg 24049 tgpconncompeqg 24050 tgpconncomp 24051 ghmcnp 24053 snclseqg 24054 tgphaus 24055 tgpt1 24056 prdstmdd 24062 prdstgpd 24063 tsmsgsum 24077 tsmsid 24078 tsmsmhm 24084 tsmsadd 24085 tgptsmscld 24089 utop3cls 24190 mopnuni 24380 isxms2 24387 prdsxmslem2 24468 metdseq0 24794 cnmpopc 24873 ishtpy 24922 om1val 24981 pi1val 24988 csscld 25201 clsocv 25202 cfilfcls 25226 relcmpcmet 25270 limcres 25839 limccnp 25844 limccnp2 25845 dvbss 25854 perfdvf 25856 dvreslem 25862 dvres2lem 25863 dvcnp2 25873 dvcnp2OLD 25874 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 dvcmulf 25900 dvmptres2 25918 dvmptcmul 25920 dvmptntr 25927 dvcnvrelem2 25975 ftc1cn 26002 taylthlem1 26333 ulmdvlem3 26363 efrlim 26931 efrlimOLD 26932 zart0 33910 zarmxt1 33911 pl1cn 33986 cvxpconn 35264 cvxsconn 35265 ivthALT 36353 neibastop2 36379 neibastop3 36380 topmeet 36382 topjoin 36383 refsum2cnlem1 45061 dvresntr 45947 rrxunitopnfi 46321 |
| Copyright terms: Public domain | W3C validator |