Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 21809 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 500 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∪ cuni 4819 ‘cfv 6380 Topctop 21790 TopOnctopon 21807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-topon 21808 |
This theorem is referenced by: toponunii 21813 toponmax 21823 toponss 21824 toponcom 21825 topgele 21827 topontopn 21837 toponmre 21990 cldmreon 21991 restuni 22059 resttopon2 22065 restlp 22080 restperf 22081 perfopn 22082 ordtcld1 22094 ordtcld2 22095 lmfval 22129 cnfval 22130 cnpfval 22131 cnpf2 22147 cnprcl2 22148 ssidcn 22152 iscnp4 22160 iscncl 22166 cncls2 22170 cncls 22171 cnntr 22172 cncnp 22177 lmcls 22199 lmcld 22200 iscnrm2 22235 ist0-2 22241 ist1-2 22244 ishaus2 22248 isreg2 22274 ordtt1 22276 sscmp 22302 dfconn2 22316 clsconn 22327 conncompcld 22331 1stccnp 22359 locfincf 22428 kgenval 22432 kgenuni 22436 1stckgenlem 22450 kgen2ss 22452 kgencn2 22454 txtopon 22488 txuni 22489 pttopon 22493 ptuniconst 22495 txcls 22501 ptclsg 22512 dfac14lem 22514 xkoccn 22516 ptcnplem 22518 ptcn 22524 cnmpt1t 22562 cnmpt2t 22570 cnmpt1res 22573 cnmpt2res 22574 cnmptkp 22577 cnmptk1p 22582 cnmptk2 22583 xkoinjcn 22584 elqtop3 22600 qtoptopon 22601 qtopcld 22610 qtoprest 22614 qtopcmap 22616 kqval 22623 kqcldsat 22630 isr0 22634 r0cld 22635 regr1lem 22636 kqnrmlem1 22640 kqnrmlem2 22641 pt1hmeo 22703 xpstopnlem1 22706 neifil 22777 trnei 22789 elflim 22868 flimss2 22869 flimss1 22870 flimopn 22872 fbflim2 22874 flimclslem 22881 flffval 22886 flfnei 22888 cnpflf2 22897 cnflf 22899 cnflf2 22900 isfcls2 22910 fclsopn 22911 fclsnei 22916 fclscmp 22927 ufilcmp 22929 fcfval 22930 fcfnei 22932 fcfelbas 22933 cnpfcf 22938 cnfcf 22939 alexsublem 22941 tmdcn2 22986 tmdgsum 22992 tmdgsum2 22993 symgtgp 23003 subgntr 23004 opnsubg 23005 clssubg 23006 clsnsg 23007 cldsubg 23008 tgpconncompeqg 23009 tgpconncomp 23010 ghmcnp 23012 snclseqg 23013 tgphaus 23014 tgpt1 23015 prdstmdd 23021 prdstgpd 23022 tsmsgsum 23036 tsmsid 23037 tsmsmhm 23043 tsmsadd 23044 tgptsmscld 23048 utop3cls 23149 mopnuni 23339 isxms2 23346 prdsxmslem2 23427 metdseq0 23751 cnmpopc 23825 ishtpy 23869 om1val 23927 pi1val 23934 csscld 24146 clsocv 24147 cfilfcls 24171 relcmpcmet 24215 limcres 24783 limccnp 24788 limccnp2 24789 dvbss 24798 perfdvf 24800 dvreslem 24806 dvres2lem 24807 dvcnp2 24817 dvaddbr 24835 dvmulbr 24836 dvcmulf 24842 dvmptres2 24859 dvmptcmul 24861 dvmptntr 24868 dvcnvrelem2 24915 ftc1cn 24940 taylthlem1 25265 ulmdvlem3 25294 efrlim 25852 zart0 31543 zarmxt1 31544 pl1cn 31619 cvxpconn 32917 cvxsconn 32918 ivthALT 34261 neibastop2 34287 neibastop3 34288 topmeet 34290 topjoin 34291 refsum2cnlem1 42253 dvresntr 43134 rrxunitopnfi 43508 |
Copyright terms: Public domain | W3C validator |