Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 21969 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: toponunii 21973 toponmax 21983 toponss 21984 toponcom 21985 topgele 21987 topontopn 21997 toponmre 22152 cldmreon 22153 restuni 22221 resttopon2 22227 restlp 22242 restperf 22243 perfopn 22244 ordtcld1 22256 ordtcld2 22257 lmfval 22291 cnfval 22292 cnpfval 22293 cnpf2 22309 cnprcl2 22310 ssidcn 22314 iscnp4 22322 iscncl 22328 cncls2 22332 cncls 22333 cnntr 22334 cncnp 22339 lmcls 22361 lmcld 22362 iscnrm2 22397 ist0-2 22403 ist1-2 22406 ishaus2 22410 isreg2 22436 ordtt1 22438 sscmp 22464 dfconn2 22478 clsconn 22489 conncompcld 22493 1stccnp 22521 locfincf 22590 kgenval 22594 kgenuni 22598 1stckgenlem 22612 kgen2ss 22614 kgencn2 22616 txtopon 22650 txuni 22651 pttopon 22655 ptuniconst 22657 txcls 22663 ptclsg 22674 dfac14lem 22676 xkoccn 22678 ptcnplem 22680 ptcn 22686 cnmpt1t 22724 cnmpt2t 22732 cnmpt1res 22735 cnmpt2res 22736 cnmptkp 22739 cnmptk1p 22744 cnmptk2 22745 xkoinjcn 22746 elqtop3 22762 qtoptopon 22763 qtopcld 22772 qtoprest 22776 qtopcmap 22778 kqval 22785 kqcldsat 22792 isr0 22796 r0cld 22797 regr1lem 22798 kqnrmlem1 22802 kqnrmlem2 22803 pt1hmeo 22865 xpstopnlem1 22868 neifil 22939 trnei 22951 elflim 23030 flimss2 23031 flimss1 23032 flimopn 23034 fbflim2 23036 flimclslem 23043 flffval 23048 flfnei 23050 cnpflf2 23059 cnflf 23061 cnflf2 23062 isfcls2 23072 fclsopn 23073 fclsnei 23078 fclscmp 23089 ufilcmp 23091 fcfval 23092 fcfnei 23094 fcfelbas 23095 cnpfcf 23100 cnfcf 23101 alexsublem 23103 tmdcn2 23148 tmdgsum 23154 tmdgsum2 23155 symgtgp 23165 subgntr 23166 opnsubg 23167 clssubg 23168 clsnsg 23169 cldsubg 23170 tgpconncompeqg 23171 tgpconncomp 23172 ghmcnp 23174 snclseqg 23175 tgphaus 23176 tgpt1 23177 prdstmdd 23183 prdstgpd 23184 tsmsgsum 23198 tsmsid 23199 tsmsmhm 23205 tsmsadd 23206 tgptsmscld 23210 utop3cls 23311 mopnuni 23502 isxms2 23509 prdsxmslem2 23591 metdseq0 23923 cnmpopc 23997 ishtpy 24041 om1val 24099 pi1val 24106 csscld 24318 clsocv 24319 cfilfcls 24343 relcmpcmet 24387 limcres 24955 limccnp 24960 limccnp2 24961 dvbss 24970 perfdvf 24972 dvreslem 24978 dvres2lem 24979 dvcnp2 24989 dvaddbr 25007 dvmulbr 25008 dvcmulf 25014 dvmptres2 25031 dvmptcmul 25033 dvmptntr 25040 dvcnvrelem2 25087 ftc1cn 25112 taylthlem1 25437 ulmdvlem3 25466 efrlim 26024 zart0 31731 zarmxt1 31732 pl1cn 31807 cvxpconn 33104 cvxsconn 33105 ivthALT 34451 neibastop2 34477 neibastop3 34478 topmeet 34480 topjoin 34481 refsum2cnlem1 42469 dvresntr 43349 rrxunitopnfi 43723 |
Copyright terms: Public domain | W3C validator |