| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22828 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4859 ‘cfv 6481 Topctop 22809 TopOnctopon 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22827 |
| This theorem is referenced by: toponunii 22832 toponmax 22842 toponss 22843 toponcom 22844 topgele 22846 topontopn 22856 toponmre 23009 cldmreon 23010 restuni 23078 resttopon2 23084 restlp 23099 restperf 23100 perfopn 23101 ordtcld1 23113 ordtcld2 23114 lmfval 23148 cnfval 23149 cnpfval 23150 cnpf2 23166 cnprcl2 23167 ssidcn 23171 iscnp4 23179 iscncl 23185 cncls2 23189 cncls 23190 cnntr 23191 cncnp 23196 lmcls 23218 lmcld 23219 iscnrm2 23254 ist0-2 23260 ist1-2 23263 ishaus2 23267 isreg2 23293 ordtt1 23295 sscmp 23321 dfconn2 23335 clsconn 23346 conncompcld 23350 1stccnp 23378 locfincf 23447 kgenval 23451 kgenuni 23455 1stckgenlem 23469 kgen2ss 23471 kgencn2 23473 txtopon 23507 txuni 23508 pttopon 23512 ptuniconst 23514 txcls 23520 ptclsg 23531 dfac14lem 23533 xkoccn 23535 ptcnplem 23537 ptcn 23543 cnmpt1t 23581 cnmpt2t 23589 cnmpt1res 23592 cnmpt2res 23593 cnmptkp 23596 cnmptk1p 23601 cnmptk2 23602 xkoinjcn 23603 elqtop3 23619 qtoptopon 23620 qtopcld 23629 qtoprest 23633 qtopcmap 23635 kqval 23642 kqcldsat 23649 isr0 23653 r0cld 23654 regr1lem 23655 kqnrmlem1 23659 kqnrmlem2 23660 pt1hmeo 23722 xpstopnlem1 23725 neifil 23796 trnei 23808 elflim 23887 flimss2 23888 flimss1 23889 flimopn 23891 fbflim2 23893 flimclslem 23900 flffval 23905 flfnei 23907 cnpflf2 23916 cnflf 23918 cnflf2 23919 isfcls2 23929 fclsopn 23930 fclsnei 23935 fclscmp 23946 ufilcmp 23948 fcfval 23949 fcfnei 23951 fcfelbas 23952 cnpfcf 23957 cnfcf 23958 alexsublem 23960 tmdcn2 24005 tmdgsum 24011 tmdgsum2 24012 symgtgp 24022 subgntr 24023 opnsubg 24024 clssubg 24025 clsnsg 24026 cldsubg 24027 tgpconncompeqg 24028 tgpconncomp 24029 ghmcnp 24031 snclseqg 24032 tgphaus 24033 tgpt1 24034 prdstmdd 24040 prdstgpd 24041 tsmsgsum 24055 tsmsid 24056 tsmsmhm 24062 tsmsadd 24063 tgptsmscld 24067 utop3cls 24167 mopnuni 24357 isxms2 24364 prdsxmslem2 24445 metdseq0 24771 cnmpopc 24850 ishtpy 24899 om1val 24958 pi1val 24965 csscld 25177 clsocv 25178 cfilfcls 25202 relcmpcmet 25246 limcres 25815 limccnp 25820 limccnp2 25821 dvbss 25830 perfdvf 25832 dvreslem 25838 dvres2lem 25839 dvcnp2 25849 dvcnp2OLD 25850 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 dvcmulf 25876 dvmptres2 25894 dvmptcmul 25896 dvmptntr 25903 dvcnvrelem2 25951 ftc1cn 25978 taylthlem1 26309 ulmdvlem3 26339 efrlim 26907 efrlimOLD 26908 zart0 33890 zarmxt1 33891 pl1cn 33966 cvxpconn 35284 cvxsconn 35285 ivthALT 36375 neibastop2 36401 neibastop3 36402 topmeet 36404 topjoin 36405 refsum2cnlem1 45080 dvresntr 45962 rrxunitopnfi 46336 |
| Copyright terms: Public domain | W3C validator |