![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22933 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 TopOnctopon 22931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-topon 22932 |
This theorem is referenced by: toponunii 22937 toponmax 22947 toponss 22948 toponcom 22949 topgele 22951 topontopn 22961 toponmre 23116 cldmreon 23117 restuni 23185 resttopon2 23191 restlp 23206 restperf 23207 perfopn 23208 ordtcld1 23220 ordtcld2 23221 lmfval 23255 cnfval 23256 cnpfval 23257 cnpf2 23273 cnprcl2 23274 ssidcn 23278 iscnp4 23286 iscncl 23292 cncls2 23296 cncls 23297 cnntr 23298 cncnp 23303 lmcls 23325 lmcld 23326 iscnrm2 23361 ist0-2 23367 ist1-2 23370 ishaus2 23374 isreg2 23400 ordtt1 23402 sscmp 23428 dfconn2 23442 clsconn 23453 conncompcld 23457 1stccnp 23485 locfincf 23554 kgenval 23558 kgenuni 23562 1stckgenlem 23576 kgen2ss 23578 kgencn2 23580 txtopon 23614 txuni 23615 pttopon 23619 ptuniconst 23621 txcls 23627 ptclsg 23638 dfac14lem 23640 xkoccn 23642 ptcnplem 23644 ptcn 23650 cnmpt1t 23688 cnmpt2t 23696 cnmpt1res 23699 cnmpt2res 23700 cnmptkp 23703 cnmptk1p 23708 cnmptk2 23709 xkoinjcn 23710 elqtop3 23726 qtoptopon 23727 qtopcld 23736 qtoprest 23740 qtopcmap 23742 kqval 23749 kqcldsat 23756 isr0 23760 r0cld 23761 regr1lem 23762 kqnrmlem1 23766 kqnrmlem2 23767 pt1hmeo 23829 xpstopnlem1 23832 neifil 23903 trnei 23915 elflim 23994 flimss2 23995 flimss1 23996 flimopn 23998 fbflim2 24000 flimclslem 24007 flffval 24012 flfnei 24014 cnpflf2 24023 cnflf 24025 cnflf2 24026 isfcls2 24036 fclsopn 24037 fclsnei 24042 fclscmp 24053 ufilcmp 24055 fcfval 24056 fcfnei 24058 fcfelbas 24059 cnpfcf 24064 cnfcf 24065 alexsublem 24067 tmdcn2 24112 tmdgsum 24118 tmdgsum2 24119 symgtgp 24129 subgntr 24130 opnsubg 24131 clssubg 24132 clsnsg 24133 cldsubg 24134 tgpconncompeqg 24135 tgpconncomp 24136 ghmcnp 24138 snclseqg 24139 tgphaus 24140 tgpt1 24141 prdstmdd 24147 prdstgpd 24148 tsmsgsum 24162 tsmsid 24163 tsmsmhm 24169 tsmsadd 24170 tgptsmscld 24174 utop3cls 24275 mopnuni 24466 isxms2 24473 prdsxmslem2 24557 metdseq0 24889 cnmpopc 24968 ishtpy 25017 om1val 25076 pi1val 25083 csscld 25296 clsocv 25297 cfilfcls 25321 relcmpcmet 25365 limcres 25935 limccnp 25940 limccnp2 25941 dvbss 25950 perfdvf 25952 dvreslem 25958 dvres2lem 25959 dvcnp2 25969 dvcnp2OLD 25970 dvaddbr 25988 dvmulbr 25989 dvmulbrOLD 25990 dvcmulf 25996 dvmptres2 26014 dvmptcmul 26016 dvmptntr 26023 dvcnvrelem2 26071 ftc1cn 26098 taylthlem1 26429 ulmdvlem3 26459 efrlim 27026 efrlimOLD 27027 zart0 33839 zarmxt1 33840 pl1cn 33915 cvxpconn 35226 cvxsconn 35227 ivthALT 36317 neibastop2 36343 neibastop3 36344 topmeet 36346 topjoin 36347 refsum2cnlem1 44974 dvresntr 45873 rrxunitopnfi 46247 |
Copyright terms: Public domain | W3C validator |