| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version | ||
| Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22815 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 ‘cfv 6486 Topctop 22796 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topon 22814 |
| This theorem is referenced by: toponunii 22819 toponmax 22829 toponss 22830 toponcom 22831 topgele 22833 topontopn 22843 toponmre 22996 cldmreon 22997 restuni 23065 resttopon2 23071 restlp 23086 restperf 23087 perfopn 23088 ordtcld1 23100 ordtcld2 23101 lmfval 23135 cnfval 23136 cnpfval 23137 cnpf2 23153 cnprcl2 23154 ssidcn 23158 iscnp4 23166 iscncl 23172 cncls2 23176 cncls 23177 cnntr 23178 cncnp 23183 lmcls 23205 lmcld 23206 iscnrm2 23241 ist0-2 23247 ist1-2 23250 ishaus2 23254 isreg2 23280 ordtt1 23282 sscmp 23308 dfconn2 23322 clsconn 23333 conncompcld 23337 1stccnp 23365 locfincf 23434 kgenval 23438 kgenuni 23442 1stckgenlem 23456 kgen2ss 23458 kgencn2 23460 txtopon 23494 txuni 23495 pttopon 23499 ptuniconst 23501 txcls 23507 ptclsg 23518 dfac14lem 23520 xkoccn 23522 ptcnplem 23524 ptcn 23530 cnmpt1t 23568 cnmpt2t 23576 cnmpt1res 23579 cnmpt2res 23580 cnmptkp 23583 cnmptk1p 23588 cnmptk2 23589 xkoinjcn 23590 elqtop3 23606 qtoptopon 23607 qtopcld 23616 qtoprest 23620 qtopcmap 23622 kqval 23629 kqcldsat 23636 isr0 23640 r0cld 23641 regr1lem 23642 kqnrmlem1 23646 kqnrmlem2 23647 pt1hmeo 23709 xpstopnlem1 23712 neifil 23783 trnei 23795 elflim 23874 flimss2 23875 flimss1 23876 flimopn 23878 fbflim2 23880 flimclslem 23887 flffval 23892 flfnei 23894 cnpflf2 23903 cnflf 23905 cnflf2 23906 isfcls2 23916 fclsopn 23917 fclsnei 23922 fclscmp 23933 ufilcmp 23935 fcfval 23936 fcfnei 23938 fcfelbas 23939 cnpfcf 23944 cnfcf 23945 alexsublem 23947 tmdcn2 23992 tmdgsum 23998 tmdgsum2 23999 symgtgp 24009 subgntr 24010 opnsubg 24011 clssubg 24012 clsnsg 24013 cldsubg 24014 tgpconncompeqg 24015 tgpconncomp 24016 ghmcnp 24018 snclseqg 24019 tgphaus 24020 tgpt1 24021 prdstmdd 24027 prdstgpd 24028 tsmsgsum 24042 tsmsid 24043 tsmsmhm 24049 tsmsadd 24050 tgptsmscld 24054 utop3cls 24155 mopnuni 24345 isxms2 24352 prdsxmslem2 24433 metdseq0 24759 cnmpopc 24838 ishtpy 24887 om1val 24946 pi1val 24953 csscld 25165 clsocv 25166 cfilfcls 25190 relcmpcmet 25234 limcres 25803 limccnp 25808 limccnp2 25809 dvbss 25818 perfdvf 25820 dvreslem 25826 dvres2lem 25827 dvcnp2 25837 dvcnp2OLD 25838 dvaddbr 25856 dvmulbr 25857 dvmulbrOLD 25858 dvcmulf 25864 dvmptres2 25882 dvmptcmul 25884 dvmptntr 25891 dvcnvrelem2 25939 ftc1cn 25966 taylthlem1 26297 ulmdvlem3 26327 efrlim 26895 efrlimOLD 26896 zart0 33848 zarmxt1 33849 pl1cn 33924 cvxpconn 35217 cvxsconn 35218 ivthALT 36311 neibastop2 36337 neibastop3 36338 topmeet 36340 topjoin 36341 refsum2cnlem1 45018 dvresntr 45903 rrxunitopnfi 46277 |
| Copyright terms: Public domain | W3C validator |