Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponuni | Structured version Visualization version GIF version |
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toponuni | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22061 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: toponunii 22065 toponmax 22075 toponss 22076 toponcom 22077 topgele 22079 topontopn 22089 toponmre 22244 cldmreon 22245 restuni 22313 resttopon2 22319 restlp 22334 restperf 22335 perfopn 22336 ordtcld1 22348 ordtcld2 22349 lmfval 22383 cnfval 22384 cnpfval 22385 cnpf2 22401 cnprcl2 22402 ssidcn 22406 iscnp4 22414 iscncl 22420 cncls2 22424 cncls 22425 cnntr 22426 cncnp 22431 lmcls 22453 lmcld 22454 iscnrm2 22489 ist0-2 22495 ist1-2 22498 ishaus2 22502 isreg2 22528 ordtt1 22530 sscmp 22556 dfconn2 22570 clsconn 22581 conncompcld 22585 1stccnp 22613 locfincf 22682 kgenval 22686 kgenuni 22690 1stckgenlem 22704 kgen2ss 22706 kgencn2 22708 txtopon 22742 txuni 22743 pttopon 22747 ptuniconst 22749 txcls 22755 ptclsg 22766 dfac14lem 22768 xkoccn 22770 ptcnplem 22772 ptcn 22778 cnmpt1t 22816 cnmpt2t 22824 cnmpt1res 22827 cnmpt2res 22828 cnmptkp 22831 cnmptk1p 22836 cnmptk2 22837 xkoinjcn 22838 elqtop3 22854 qtoptopon 22855 qtopcld 22864 qtoprest 22868 qtopcmap 22870 kqval 22877 kqcldsat 22884 isr0 22888 r0cld 22889 regr1lem 22890 kqnrmlem1 22894 kqnrmlem2 22895 pt1hmeo 22957 xpstopnlem1 22960 neifil 23031 trnei 23043 elflim 23122 flimss2 23123 flimss1 23124 flimopn 23126 fbflim2 23128 flimclslem 23135 flffval 23140 flfnei 23142 cnpflf2 23151 cnflf 23153 cnflf2 23154 isfcls2 23164 fclsopn 23165 fclsnei 23170 fclscmp 23181 ufilcmp 23183 fcfval 23184 fcfnei 23186 fcfelbas 23187 cnpfcf 23192 cnfcf 23193 alexsublem 23195 tmdcn2 23240 tmdgsum 23246 tmdgsum2 23247 symgtgp 23257 subgntr 23258 opnsubg 23259 clssubg 23260 clsnsg 23261 cldsubg 23262 tgpconncompeqg 23263 tgpconncomp 23264 ghmcnp 23266 snclseqg 23267 tgphaus 23268 tgpt1 23269 prdstmdd 23275 prdstgpd 23276 tsmsgsum 23290 tsmsid 23291 tsmsmhm 23297 tsmsadd 23298 tgptsmscld 23302 utop3cls 23403 mopnuni 23594 isxms2 23601 prdsxmslem2 23685 metdseq0 24017 cnmpopc 24091 ishtpy 24135 om1val 24193 pi1val 24200 csscld 24413 clsocv 24414 cfilfcls 24438 relcmpcmet 24482 limcres 25050 limccnp 25055 limccnp2 25056 dvbss 25065 perfdvf 25067 dvreslem 25073 dvres2lem 25074 dvcnp2 25084 dvaddbr 25102 dvmulbr 25103 dvcmulf 25109 dvmptres2 25126 dvmptcmul 25128 dvmptntr 25135 dvcnvrelem2 25182 ftc1cn 25207 taylthlem1 25532 ulmdvlem3 25561 efrlim 26119 zart0 31829 zarmxt1 31830 pl1cn 31905 cvxpconn 33204 cvxsconn 33205 ivthALT 34524 neibastop2 34550 neibastop3 34551 topmeet 34553 topjoin 34554 refsum2cnlem1 42580 dvresntr 43459 rrxunitopnfi 43833 |
Copyright terms: Public domain | W3C validator |