MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf Structured version   Visualization version   GIF version

Theorem tpf 14398
Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf
StepHypRef Expression
1 tpid1g 4720 . . . . . 6 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
213ad2ant1 1133 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
3 tpid2g 4722 . . . . . . 7 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵, 𝐶})
433ad2ant2 1134 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
5 tpid3g 4723 . . . . . . 7 (𝐶𝑉𝐶 ∈ {𝐴, 𝐵, 𝐶})
653ad2ant3 1135 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
74, 6ifcld 4520 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 1, 𝐵, 𝐶) ∈ {𝐴, 𝐵, 𝐶})
82, 7ifcld 4520 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ {𝐴, 𝐵, 𝐶})
9 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
108, 9eleqtrrdi 2840 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
1110adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑥 ∈ (0..^3)) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
12 tpf1o.f . 2 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
1311, 12fmptd 7042 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  ifcif 4473  {ctp 4578  cmpt 5170  wf 6473  (class class class)co 7341  0cc0 10998  1c1 10999  3c3 12173  ..^cfzo 13546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6479  df-fn 6480  df-f 6481
This theorem is referenced by:  tpfo  14399
  Copyright terms: Public domain W3C validator