MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf Structured version   Visualization version   GIF version

Theorem tpf 14416
Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf
StepHypRef Expression
1 tpid1g 4723 . . . . . 6 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
213ad2ant1 1133 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
3 tpid2g 4725 . . . . . . 7 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵, 𝐶})
433ad2ant2 1134 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
5 tpid3g 4726 . . . . . . 7 (𝐶𝑉𝐶 ∈ {𝐴, 𝐵, 𝐶})
653ad2ant3 1135 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
74, 6ifcld 4523 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 1, 𝐵, 𝐶) ∈ {𝐴, 𝐵, 𝐶})
82, 7ifcld 4523 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ {𝐴, 𝐵, 𝐶})
9 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
108, 9eleqtrrdi 2844 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
1110adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑥 ∈ (0..^3)) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
12 tpf1o.f . 2 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
1311, 12fmptd 7056 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  ifcif 4476  {ctp 4581  cmpt 5176  wf 6485  (class class class)co 7355  0cc0 11016  1c1 11017  3c3 12191  ..^cfzo 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  tpfo  14417
  Copyright terms: Public domain W3C validator