| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpf | Structured version Visualization version GIF version | ||
| Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025.) |
| Ref | Expression |
|---|---|
| tpf1o.f | ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) |
| tpf.t | ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} |
| Ref | Expression |
|---|---|
| tpf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐹:(0..^3)⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpid1g 4736 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) |
| 3 | tpid2g 4738 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) | |
| 4 | 3 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
| 5 | tpid3g 4739 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 6 | 5 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 7 | 4, 6 | ifcld 4538 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 1, 𝐵, 𝐶) ∈ {𝐴, 𝐵, 𝐶}) |
| 8 | 2, 7 | ifcld 4538 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ {𝐴, 𝐵, 𝐶}) |
| 9 | tpf.t | . . . 4 ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} | |
| 10 | 8, 9 | eleqtrrdi 2840 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇) |
| 11 | 10 | adantr 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑥 ∈ (0..^3)) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇) |
| 12 | tpf1o.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) | |
| 13 | 11, 12 | fmptd 7089 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐹:(0..^3)⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4491 {ctp 4596 ↦ cmpt 5191 ⟶wf 6510 (class class class)co 7390 0cc0 11075 1c1 11076 3c3 12249 ..^cfzo 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: tpfo 14472 |
| Copyright terms: Public domain | W3C validator |