| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpf | Structured version Visualization version GIF version | ||
| Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025.) |
| Ref | Expression |
|---|---|
| tpf1o.f | ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) |
| tpf.t | ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} |
| Ref | Expression |
|---|---|
| tpf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐹:(0..^3)⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpid1g 4750 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) |
| 3 | tpid2g 4752 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) | |
| 4 | 3 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
| 5 | tpid3g 4753 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 6 | 5 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
| 7 | 4, 6 | ifcld 4552 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 1, 𝐵, 𝐶) ∈ {𝐴, 𝐵, 𝐶}) |
| 8 | 2, 7 | ifcld 4552 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ {𝐴, 𝐵, 𝐶}) |
| 9 | tpf.t | . . . 4 ⊢ 𝑇 = {𝐴, 𝐵, 𝐶} | |
| 10 | 8, 9 | eleqtrrdi 2846 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇) |
| 11 | 10 | adantr 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ 𝑥 ∈ (0..^3)) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇) |
| 12 | tpf1o.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) | |
| 13 | 11, 12 | fmptd 7109 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐹:(0..^3)⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4505 {ctp 4610 ↦ cmpt 5206 ⟶wf 6532 (class class class)co 7410 0cc0 11134 1c1 11135 3c3 12301 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: tpfo 14523 |
| Copyright terms: Public domain | W3C validator |