MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpf Structured version   Visualization version   GIF version

Theorem tpf 14464
Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpf ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpf
StepHypRef Expression
1 tpid1g 4733 . . . . . 6 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵, 𝐶})
213ad2ant1 1133 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
3 tpid2g 4735 . . . . . . 7 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵, 𝐶})
433ad2ant2 1134 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
5 tpid3g 4736 . . . . . . 7 (𝐶𝑉𝐶 ∈ {𝐴, 𝐵, 𝐶})
653ad2ant3 1135 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
74, 6ifcld 4535 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 1, 𝐵, 𝐶) ∈ {𝐴, 𝐵, 𝐶})
82, 7ifcld 4535 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ {𝐴, 𝐵, 𝐶})
9 tpf.t . . . 4 𝑇 = {𝐴, 𝐵, 𝐶}
108, 9eleqtrrdi 2839 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
1110adantr 480 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑥 ∈ (0..^3)) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) ∈ 𝑇)
12 tpf1o.f . 2 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
1311, 12fmptd 7086 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  ifcif 4488  {ctp 4593  cmpt 5188  wf 6507  (class class class)co 7387  0cc0 11068  1c1 11069  3c3 12242  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  tpfo  14465
  Copyright terms: Public domain W3C validator