HomeHome Metamath Proof Explorer
Theorem List (p. 145 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 14401-14500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempfxres 14401 Value of the subword extractor for left-anchored subwords. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 ↾ (0..^𝐿)))
 
Theorempfxf 14402 A prefix of a word is a function from a half-open range of nonnegative integers of the same length as the prefix to the set of symbols for the original word. (Contributed by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿):(0..^𝐿)⟶𝑉)
 
Theorempfxfn 14403 Value of the prefix extractor as function with domain. (Contributed by AV, 2-May-2020.)
((𝑆 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) Fn (0..^𝐿))
 
Theorempfxfv 14404 A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 prefix 𝐿)‘𝐼) = (𝑊𝐼))
 
Theorempfxlen 14405 Length of a prefix. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 prefix 𝐿)) = 𝐿)
 
Theorempfxid 14406 A word is a prefix of itself. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by AV, 2-May-2020.)
(𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆)
 
Theorempfxrn 14407 The range of a prefix of a word is a subset of the set of symbols for the word. (Contributed by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) ⊆ 𝑉)
 
Theorempfxn0 14408 A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Revised by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ ∧ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) ≠ ∅)
 
Theorempfxnd 14409 The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6813). (Contributed by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
 
Theorempfxnd0 14410 The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6813). (Contributed by AV, 3-Dec-2022.)
((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)
 
Theorempfxwrdsymb 14411 A prefix of a word is a word over the symbols it consists of. (Contributed by AV, 3-Dec-2022.)
(𝑆 ∈ Word 𝐴 → (𝑆 prefix 𝐿) ∈ Word (𝑆 “ (0..^𝐿)))
 
Theoremaddlenrevpfx 14412 The sum of the lengths of two reversed parts of a word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix 𝑀))) = (♯‘𝑊))
 
Theoremaddlenpfx 14413 The sum of the lengths of two parts of a word is the length of the word. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 𝑀)) + (♯‘(𝑊 substr ⟨𝑀, (♯‘𝑊)⟩))) = (♯‘𝑊))
 
Theorempfxfv0 14414 The first symbol of a prefix is the first symbol of the word. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝐿)‘0) = (𝑊‘0))
 
Theorempfxtrcfv 14415 A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝐼) = (𝑊𝐼))
 
Theorempfxtrcfv0 14416 The first symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 prefix ((♯‘𝑊) − 1))‘0) = (𝑊‘0))
 
Theorempfxfvlsw 14417 The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 3-May-2020.)
((𝑊 ∈ Word 𝑉𝐿 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝐿)) = (𝑊‘(𝐿 − 1)))
 
Theorempfxeq 14418* The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
 
Theorempfxtrcfvl 14419 The last symbol in a word truncated by one symbol. (Contributed by AV, 16-Jun-2018.) (Revised by AV, 5-May-2020.)
((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
 
Theorempfxsuffeqwrdeq 14420 Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
 
Theorempfxsuff1eqwrdeq 14421 Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (𝑊 = 𝑈 ↔ ((♯‘𝑊) = (♯‘𝑈) ∧ ((𝑊 prefix ((♯‘𝑊) − 1)) = (𝑈 prefix ((♯‘𝑊) − 1)) ∧ (lastS‘𝑊) = (lastS‘𝑈)))))
 
Theoremdisjwrdpfx 14422* Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word 𝑊 is called an "extension" of a word 𝑃 if 𝑃 is a prefix of 𝑊. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Disj 𝑦𝑊 {𝑥 ∈ Word 𝑉 ∣ (𝑥 prefix 𝑁) = 𝑦}
 
Theoremccatpfx 14423 Concatenating a prefix with an adjacent subword makes a longer prefix. (Contributed by AV, 7-May-2020.)
((𝑆 ∈ Word 𝐴𝑌 ∈ (0...𝑍) ∧ 𝑍 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, 𝑍⟩)) = (𝑆 prefix 𝑍))
 
Theorempfxccat1 14424 Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆)
 
Theorempfx1 14425 The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 prefix 1) = ⟨“(𝑊‘0)”⟩)
 
5.7.8  Subwords of subwords
 
Theoremswrdswrdlem 14426 Lemma for swrdswrd 14427. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
(((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
 
Theoremswrdswrd 14427 A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
 
Theorempfxswrd 14428 A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)))
 
Theoremswrdpfx 14429 A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → ((𝑊 prefix 𝑁) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨𝐾, 𝐿⟩)))
 
Theorempfxpfx 14430 A prefix of a prefix is a prefix. (Contributed by Alexander van der Vekens, 7-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝐿 ∈ (0...𝑁)) → ((𝑊 prefix 𝑁) prefix 𝐿) = (𝑊 prefix 𝐿))
 
Theorempfxpfxid 14431 A prefix of a prefix with the same length is the original prefix. In other words, the operation "prefix of length 𝑁 " is idempotent. (Contributed by AV, 5-Apr-2018.) (Revised by AV, 8-May-2020.)
((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) prefix 𝑁) = (𝑊 prefix 𝑁))
 
5.7.9  Subwords and concatenations
 
Theorempfxcctswrd 14432 The concatenation of the prefix of a word and the rest of the word yields the word itself. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩)) = 𝑊)
 
Theoremlenpfxcctswrd 14433 The length of the concatenation of the prefix of a word and the rest of the word is the length of the word. (Contributed by AV, 21-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 prefix 𝑀) ++ (𝑊 substr ⟨𝑀, (♯‘𝑊)⟩))) = (♯‘𝑊))
 
Theoremlenrevpfxcctswrd 14434 The length of the concatenation of the rest of a word and the prefix of the word is the length of the word. (Contributed by Alexander van der Vekens, 1-Apr-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘((𝑊 substr ⟨𝑀, (♯‘𝑊)⟩) ++ (𝑊 prefix 𝑀))) = (♯‘𝑊))
 
Theorempfxlswccat 14435 Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
 
Theoremccats1pfxeq 14436 The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremccats1pfxeqrex 14437* There exists a symbol such that its concatenation after the prefix obtained by deleting the last symbol of a nonempty word results in the word itself. (Contributed by AV, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → ∃𝑠𝑉 𝑈 = (𝑊 ++ ⟨“𝑠”⟩)))
 
Theoremccatopth 14438 An opth 5392-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatopth2 14439 An opth 5392-like theorem for recovering the two halves of a concatenated word. (Contributed by Mario Carneiro, 1-Oct-2015.)
(((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremccatlcan 14440 Concatenation of words is left-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐶 ++ 𝐴) = (𝐶 ++ 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremccatrcan 14441 Concatenation of words is right-cancellative. (Contributed by Mario Carneiro, 2-Oct-2015.)
((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑋𝐶 ∈ Word 𝑋) → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremwrdeqs1cat 14442 Decompose a nonempty word by separating off the first symbol. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 12-Oct-2022.)
((𝑊 ∈ Word 𝐴𝑊 ≠ ∅) → 𝑊 = (⟨“(𝑊‘0)”⟩ ++ (𝑊 substr ⟨1, (♯‘𝑊)⟩)))
 
Theoremcats1un 14443 Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(♯‘𝐴), 𝐵⟩}))
 
Theoremwrdind 14444* Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
(𝑥 = ∅ → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))       (𝐴 ∈ Word 𝐵𝜏)
 
Theoremwrd2ind 14445* Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019.) (Proof shortened by AV, 12-Oct-2022.)
((𝑥 = ∅ ∧ 𝑤 = ∅) → (𝜑𝜓))    &   ((𝑥 = 𝑦𝑤 = 𝑢) → (𝜑𝜒))    &   ((𝑥 = (𝑦 ++ ⟨“𝑧”⟩) ∧ 𝑤 = (𝑢 ++ ⟨“𝑠”⟩)) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜌𝜏))    &   (𝑤 = 𝐵 → (𝜑𝜌))    &   𝜓    &   (((𝑦 ∈ Word 𝑋𝑧𝑋) ∧ (𝑢 ∈ Word 𝑌𝑠𝑌) ∧ (♯‘𝑦) = (♯‘𝑢)) → (𝜒𝜃))       ((𝐴 ∈ Word 𝑋𝐵 ∈ Word 𝑌 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝜏)
 
5.7.10  Subwords of concatenations
 
Theoremswrdccatfn 14446 The subword of a concatenation as function. (Contributed by Alexander van der Vekens, 27-May-2018.)
(((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...((♯‘𝐴) + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
 
Theoremswrdccatin1 14447 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
 
Theorempfxccatin12lem4 14448 Lemma 4 for pfxccatin12 14455. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 23-May-2018.)
((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
 
Theorempfxccatin12lem2a 14449 Lemma for pfxccatin12lem2 14453. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
 
Theorempfxccatin12lem1 14450 Lemma 1 for pfxccatin12 14455. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
 
Theoremswrdccatin2 14451 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
 
Theorempfxccatin12lem2c 14452 Lemma for pfxccatin12lem2 14453 and pfxccatin12lem3 14454. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
 
Theorempfxccatin12lem2 14453 Lemma 2 for pfxccatin12 14455. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
 
Theorempfxccatin12lem3 14454 Lemma 3 for pfxccatin12 14455. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
𝐿 = (♯‘𝐴)       (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝐾)))
 
Theorempfxccatin12 14455 The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by AV, 9-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
 
Theorempfxccat3 14456 The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))))
 
Theoremswrdccat 14457 The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, if(𝑁𝐿, 𝑁, 𝐿)⟩) ++ (𝐵 substr ⟨if(0 ≤ (𝑀𝐿), (𝑀𝐿), 0), (𝑁𝐿)⟩))))
 
Theorempfxccatpfx1 14458 A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
 
Theorempfxccatpfx2 14459 A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
 
Theorempfxccat3a 14460 A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
𝐿 = (♯‘𝐴)    &   𝑀 = (♯‘𝐵)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
 
Theoremswrdccat3blem 14461 Lemma for swrdccat3b 14462. (Contributed by AV, 30-May-2018.)
𝐿 = (♯‘𝐴)       ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
 
Theoremswrdccat3b 14462 A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
𝐿 = (♯‘𝐴)       ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
 
Theorempfxccatid 14463 A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 10-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 = (♯‘𝐴)) → ((𝐴 ++ 𝐵) prefix 𝑁) = 𝐴)
 
Theoremccats1pfxeqbi 14464 A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 
Theoremswrdccatin1d 14465 The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝑁))    &   (𝜑𝑁 ∈ (0...𝐿))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
 
Theoremswrdccatin2d 14466 The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (𝐿...𝑁))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
 
Theorempfxccatin12d 14467 The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.)
(𝜑 → (♯‘𝐴) = 𝐿)    &   (𝜑 → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))    &   (𝜑𝑀 ∈ (0...𝐿))    &   (𝜑𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))       (𝜑 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
 
Theoremreuccatpfxs1lem 14468* Lemma for reuccatpfxs1 14469. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.)
(((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ ∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
 
Theoremreuccatpfxs1 14469* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
𝑣𝑋       ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
Theoremreuccatpfxs1v 14470* There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof shortened by AV, 13-Oct-2022.)
((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
 
5.7.11  Splicing words (substring replacement)
 
Syntaxcsplice 14471 Syntax for the word splicing operator.
class splice
 
Definitiondf-splice 14472* Define an operation which replaces portions of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 14-Oct-2022.)
splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
 
Theoremsplval 14473 Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 11-May-2020.) (Revised by AV, 15-Oct-2022.)
((𝑆𝑉 ∧ (𝐹𝑊𝑇𝑋𝑅𝑌)) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr ⟨𝑇, (♯‘𝑆)⟩)))
 
Theoremsplcl 14474 Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
((𝑆 ∈ Word 𝐴𝑅 ∈ Word 𝐴) → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) ∈ Word 𝐴)
 
Theoremsplid 14475 Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.)
((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆)
 
Theoremspllen 14476 The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
(𝜑𝑆 ∈ Word 𝐴)    &   (𝜑𝐹 ∈ (0...𝑇))    &   (𝜑𝑇 ∈ (0...(♯‘𝑆)))    &   (𝜑𝑅 ∈ Word 𝐴)       (𝜑 → (♯‘(𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇𝐹))))
 
Theoremsplfv1 14477 Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
(𝜑𝑆 ∈ Word 𝐴)    &   (𝜑𝐹 ∈ (0...𝑇))    &   (𝜑𝑇 ∈ (0...(♯‘𝑆)))    &   (𝜑𝑅 ∈ Word 𝐴)    &   (𝜑𝑋 ∈ (0..^𝐹))       (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘𝑋) = (𝑆𝑋))
 
Theoremsplfv2a 14478 Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.)
(𝜑𝑆 ∈ Word 𝐴)    &   (𝜑𝐹 ∈ (0...𝑇))    &   (𝜑𝑇 ∈ (0...(♯‘𝑆)))    &   (𝜑𝑅 ∈ Word 𝐴)    &   (𝜑𝑋 ∈ (0..^(♯‘𝑅)))       (𝜑 → ((𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩)‘(𝐹 + 𝑋)) = (𝑅𝑋))
 
Theoremsplval2 14479 Value of a splice, assuming the input word 𝑆 has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.)
(𝜑𝐴 ∈ Word 𝑋)    &   (𝜑𝐵 ∈ Word 𝑋)    &   (𝜑𝐶 ∈ Word 𝑋)    &   (𝜑𝑅 ∈ Word 𝑋)    &   (𝜑𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶))    &   (𝜑𝐹 = (♯‘𝐴))    &   (𝜑𝑇 = (𝐹 + (♯‘𝐵)))       (𝜑 → (𝑆 splice ⟨𝐹, 𝑇, 𝑅⟩) = ((𝐴 ++ 𝑅) ++ 𝐶))
 
5.7.12  Reversing words
 
Syntaxcreverse 14480 Syntax for the word reverse operator.
class reverse
 
Definitiondf-reverse 14481* Define an operation which reverses the order of symbols in a word. This operation is also known as "word reversal" and "word mirroring". (Contributed by Stefan O'Rear, 26-Aug-2015.)
reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥))))
 
Theoremrevval 14482* Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.)
(𝑊𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
 
Theoremrevcl 14483 The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015.)
(𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
 
Theoremrevlen 14484 The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.)
(𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
 
Theoremrevfv 14485 Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.)
((𝑊 ∈ Word 𝐴𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋)))
 
Theoremrev0 14486 The empty word is its own reverse. (Contributed by Stefan O'Rear, 26-Aug-2015.)
(reverse‘∅) = ∅
 
Theoremrevs1 14487 Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(reverse‘⟨“𝑆”⟩) = ⟨“𝑆”⟩
 
Theoremrevccat 14488 Antiautomorphic property of the reversal operation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐴) → (reverse‘(𝑆 ++ 𝑇)) = ((reverse‘𝑇) ++ (reverse‘𝑆)))
 
Theoremrevrev 14489 Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
(𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
 
5.7.13  Repeated symbol words
 
Syntaxcreps 14490 Extend class notation with words consisting of one repeated symbol.
class repeatS
 
Definitiondf-reps 14491* Definition to construct a word consisting of one repeated symbol, often called "repeated symbol word" for short in the following. (Contributed by Alexander van der Vekens, 4-Nov-2018.)
repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
 
Theoremreps 14492* Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
 
Theoremrepsundef 14493 A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.)
(𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅)
 
Theoremrepsconst 14494 Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt 5650. (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
 
Theoremrepsf 14495 The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉)
 
Theoremrepswsymb 14496 The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)
 
Theoremrepsw 14497 A function mapping a half-open range of nonnegative integers to a constant is a word consisting of one symbol repeated several times ("repeated symbol word"). (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉)
 
Theoremrepswlen 14498 The length of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
 
Theoremrepsw0 14499 The "repeated symbol word" of length 0. (Contributed by AV, 4-Nov-2018.)
(𝑆𝑉 → (𝑆 repeatS 0) = ∅)
 
Theoremrepsdf2 14500* Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.)
((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >