MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpfo Structured version   Visualization version   GIF version

Theorem tpfo 14539
Description: A function onto a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpfo ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpfo
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpf1o.f . . 3 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . 3 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpf 14538 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
4 eltpi 4688 . . . . . 6 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → (𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶))
5 3nn 12345 . . . . . . . . . . 11 3 ∈ ℕ
6 lbfzo0 13739 . . . . . . . . . . 11 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
75, 6mpbir 231 . . . . . . . . . 10 0 ∈ (0..^3)
87a1i 11 . . . . . . . . 9 (𝐴𝑉 → 0 ∈ (0..^3))
9 fveq2 6906 . . . . . . . . . . 11 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
109eqeq2d 2748 . . . . . . . . . 10 (𝑖 = 0 → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
1110adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑖 = 0) → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
121tpf1ofv0 14535 . . . . . . . . . 10 (𝐴𝑉 → (𝐹‘0) = 𝐴)
1312eqcomd 2743 . . . . . . . . 9 (𝐴𝑉𝐴 = (𝐹‘0))
148, 11, 13rspcedvd 3624 . . . . . . . 8 (𝐴𝑉 → ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖))
15 eqeq1 2741 . . . . . . . . 9 (𝑡 = 𝐴 → (𝑡 = (𝐹𝑖) ↔ 𝐴 = (𝐹𝑖)))
1615rexbidv 3179 . . . . . . . 8 (𝑡 = 𝐴 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖)))
1714, 16syl5ibrcom 247 . . . . . . 7 (𝐴𝑉 → (𝑡 = 𝐴 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
18 1nn0 12542 . . . . . . . . . . 11 1 ∈ ℕ0
19 1lt3 12439 . . . . . . . . . . 11 1 < 3
20 elfzo0 13740 . . . . . . . . . . 11 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
2118, 5, 19, 20mpbir3an 1342 . . . . . . . . . 10 1 ∈ (0..^3)
2221a1i 11 . . . . . . . . 9 (𝐵𝑉 → 1 ∈ (0..^3))
23 fveq2 6906 . . . . . . . . . . 11 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
2423eqeq2d 2748 . . . . . . . . . 10 (𝑖 = 1 → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
2524adantl 481 . . . . . . . . 9 ((𝐵𝑉𝑖 = 1) → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
261tpf1ofv1 14536 . . . . . . . . . 10 (𝐵𝑉 → (𝐹‘1) = 𝐵)
2726eqcomd 2743 . . . . . . . . 9 (𝐵𝑉𝐵 = (𝐹‘1))
2822, 25, 27rspcedvd 3624 . . . . . . . 8 (𝐵𝑉 → ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖))
29 eqeq1 2741 . . . . . . . . 9 (𝑡 = 𝐵 → (𝑡 = (𝐹𝑖) ↔ 𝐵 = (𝐹𝑖)))
3029rexbidv 3179 . . . . . . . 8 (𝑡 = 𝐵 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖)))
3128, 30syl5ibrcom 247 . . . . . . 7 (𝐵𝑉 → (𝑡 = 𝐵 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
32 2nn0 12543 . . . . . . . . . . 11 2 ∈ ℕ0
33 2lt3 12438 . . . . . . . . . . 11 2 < 3
34 elfzo0 13740 . . . . . . . . . . 11 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
3532, 5, 33, 34mpbir3an 1342 . . . . . . . . . 10 2 ∈ (0..^3)
3635a1i 11 . . . . . . . . 9 (𝐶𝑉 → 2 ∈ (0..^3))
37 fveq2 6906 . . . . . . . . . . 11 (𝑖 = 2 → (𝐹𝑖) = (𝐹‘2))
3837eqeq2d 2748 . . . . . . . . . 10 (𝑖 = 2 → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
3938adantl 481 . . . . . . . . 9 ((𝐶𝑉𝑖 = 2) → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
401tpf1ofv2 14537 . . . . . . . . . 10 (𝐶𝑉 → (𝐹‘2) = 𝐶)
4140eqcomd 2743 . . . . . . . . 9 (𝐶𝑉𝐶 = (𝐹‘2))
4236, 39, 41rspcedvd 3624 . . . . . . . 8 (𝐶𝑉 → ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖))
43 eqeq1 2741 . . . . . . . . 9 (𝑡 = 𝐶 → (𝑡 = (𝐹𝑖) ↔ 𝐶 = (𝐹𝑖)))
4443rexbidv 3179 . . . . . . . 8 (𝑡 = 𝐶 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖)))
4542, 44syl5ibrcom 247 . . . . . . 7 (𝐶𝑉 → (𝑡 = 𝐶 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4617, 31, 453jaao 1435 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
474, 46syl5com 31 . . . . 5 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4847, 2eleq2s 2859 . . . 4 (𝑡𝑇 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4948com12 32 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑡𝑇 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
5049ralrimiv 3145 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖))
51 dffo3 7122 . 2 (𝐹:(0..^3)–onto𝑇 ↔ (𝐹:(0..^3)⟶𝑇 ∧ ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
523, 50, 51sylanbrc 583 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ifcif 4525  {ctp 4630   class class class wbr 5143  cmpt 5225  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   < clt 11295  cn 12266  2c2 12321  3c3 12322  0cn0 12526  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by:  tpf1o  14540
  Copyright terms: Public domain W3C validator