MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpfo Structured version   Visualization version   GIF version

Theorem tpfo 14441
Description: A function onto a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpfo ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpfo
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpf1o.f . . 3 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . 3 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpf 14440 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
4 eltpi 4648 . . . . . 6 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → (𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶))
5 3nn 12241 . . . . . . . . . . 11 3 ∈ ℕ
6 lbfzo0 13636 . . . . . . . . . . 11 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
75, 6mpbir 231 . . . . . . . . . 10 0 ∈ (0..^3)
87a1i 11 . . . . . . . . 9 (𝐴𝑉 → 0 ∈ (0..^3))
9 fveq2 6840 . . . . . . . . . . 11 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
109eqeq2d 2740 . . . . . . . . . 10 (𝑖 = 0 → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
1110adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑖 = 0) → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
121tpf1ofv0 14437 . . . . . . . . . 10 (𝐴𝑉 → (𝐹‘0) = 𝐴)
1312eqcomd 2735 . . . . . . . . 9 (𝐴𝑉𝐴 = (𝐹‘0))
148, 11, 13rspcedvd 3587 . . . . . . . 8 (𝐴𝑉 → ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖))
15 eqeq1 2733 . . . . . . . . 9 (𝑡 = 𝐴 → (𝑡 = (𝐹𝑖) ↔ 𝐴 = (𝐹𝑖)))
1615rexbidv 3157 . . . . . . . 8 (𝑡 = 𝐴 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖)))
1714, 16syl5ibrcom 247 . . . . . . 7 (𝐴𝑉 → (𝑡 = 𝐴 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
18 1nn0 12434 . . . . . . . . . . 11 1 ∈ ℕ0
19 1lt3 12330 . . . . . . . . . . 11 1 < 3
20 elfzo0 13637 . . . . . . . . . . 11 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
2118, 5, 19, 20mpbir3an 1342 . . . . . . . . . 10 1 ∈ (0..^3)
2221a1i 11 . . . . . . . . 9 (𝐵𝑉 → 1 ∈ (0..^3))
23 fveq2 6840 . . . . . . . . . . 11 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
2423eqeq2d 2740 . . . . . . . . . 10 (𝑖 = 1 → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
2524adantl 481 . . . . . . . . 9 ((𝐵𝑉𝑖 = 1) → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
261tpf1ofv1 14438 . . . . . . . . . 10 (𝐵𝑉 → (𝐹‘1) = 𝐵)
2726eqcomd 2735 . . . . . . . . 9 (𝐵𝑉𝐵 = (𝐹‘1))
2822, 25, 27rspcedvd 3587 . . . . . . . 8 (𝐵𝑉 → ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖))
29 eqeq1 2733 . . . . . . . . 9 (𝑡 = 𝐵 → (𝑡 = (𝐹𝑖) ↔ 𝐵 = (𝐹𝑖)))
3029rexbidv 3157 . . . . . . . 8 (𝑡 = 𝐵 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖)))
3128, 30syl5ibrcom 247 . . . . . . 7 (𝐵𝑉 → (𝑡 = 𝐵 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
32 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
33 2lt3 12329 . . . . . . . . . . 11 2 < 3
34 elfzo0 13637 . . . . . . . . . . 11 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
3532, 5, 33, 34mpbir3an 1342 . . . . . . . . . 10 2 ∈ (0..^3)
3635a1i 11 . . . . . . . . 9 (𝐶𝑉 → 2 ∈ (0..^3))
37 fveq2 6840 . . . . . . . . . . 11 (𝑖 = 2 → (𝐹𝑖) = (𝐹‘2))
3837eqeq2d 2740 . . . . . . . . . 10 (𝑖 = 2 → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
3938adantl 481 . . . . . . . . 9 ((𝐶𝑉𝑖 = 2) → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
401tpf1ofv2 14439 . . . . . . . . . 10 (𝐶𝑉 → (𝐹‘2) = 𝐶)
4140eqcomd 2735 . . . . . . . . 9 (𝐶𝑉𝐶 = (𝐹‘2))
4236, 39, 41rspcedvd 3587 . . . . . . . 8 (𝐶𝑉 → ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖))
43 eqeq1 2733 . . . . . . . . 9 (𝑡 = 𝐶 → (𝑡 = (𝐹𝑖) ↔ 𝐶 = (𝐹𝑖)))
4443rexbidv 3157 . . . . . . . 8 (𝑡 = 𝐶 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖)))
4542, 44syl5ibrcom 247 . . . . . . 7 (𝐶𝑉 → (𝑡 = 𝐶 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4617, 31, 453jaao 1435 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
474, 46syl5com 31 . . . . 5 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4847, 2eleq2s 2846 . . . 4 (𝑡𝑇 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4948com12 32 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑡𝑇 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
5049ralrimiv 3124 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖))
51 dffo3 7056 . 2 (𝐹:(0..^3)–onto𝑇 ↔ (𝐹:(0..^3)⟶𝑇 ∧ ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
523, 50, 51sylanbrc 583 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4484  {ctp 4589   class class class wbr 5102  cmpt 5183  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   < clt 11184  cn 12162  2c2 12217  3c3 12218  0cn0 12418  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  tpf1o  14442
  Copyright terms: Public domain W3C validator