MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpfo Structured version   Visualization version   GIF version

Theorem tpfo 14518
Description: A function onto a (proper) triple. (Contributed by AV, 20-Jul-2025.)
Hypotheses
Ref Expression
tpf1o.f 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
tpf.t 𝑇 = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
tpfo ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑇
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tpfo
Dummy variables 𝑖 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tpf1o.f . . 3 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))
2 tpf.t . . 3 𝑇 = {𝐴, 𝐵, 𝐶}
31, 2tpf 14517 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)⟶𝑇)
4 eltpi 4664 . . . . . 6 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → (𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶))
5 3nn 12319 . . . . . . . . . . 11 3 ∈ ℕ
6 lbfzo0 13716 . . . . . . . . . . 11 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
75, 6mpbir 231 . . . . . . . . . 10 0 ∈ (0..^3)
87a1i 11 . . . . . . . . 9 (𝐴𝑉 → 0 ∈ (0..^3))
9 fveq2 6876 . . . . . . . . . . 11 (𝑖 = 0 → (𝐹𝑖) = (𝐹‘0))
109eqeq2d 2746 . . . . . . . . . 10 (𝑖 = 0 → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
1110adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑖 = 0) → (𝐴 = (𝐹𝑖) ↔ 𝐴 = (𝐹‘0)))
121tpf1ofv0 14514 . . . . . . . . . 10 (𝐴𝑉 → (𝐹‘0) = 𝐴)
1312eqcomd 2741 . . . . . . . . 9 (𝐴𝑉𝐴 = (𝐹‘0))
148, 11, 13rspcedvd 3603 . . . . . . . 8 (𝐴𝑉 → ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖))
15 eqeq1 2739 . . . . . . . . 9 (𝑡 = 𝐴 → (𝑡 = (𝐹𝑖) ↔ 𝐴 = (𝐹𝑖)))
1615rexbidv 3164 . . . . . . . 8 (𝑡 = 𝐴 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐴 = (𝐹𝑖)))
1714, 16syl5ibrcom 247 . . . . . . 7 (𝐴𝑉 → (𝑡 = 𝐴 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
18 1nn0 12517 . . . . . . . . . . 11 1 ∈ ℕ0
19 1lt3 12413 . . . . . . . . . . 11 1 < 3
20 elfzo0 13717 . . . . . . . . . . 11 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
2118, 5, 19, 20mpbir3an 1342 . . . . . . . . . 10 1 ∈ (0..^3)
2221a1i 11 . . . . . . . . 9 (𝐵𝑉 → 1 ∈ (0..^3))
23 fveq2 6876 . . . . . . . . . . 11 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
2423eqeq2d 2746 . . . . . . . . . 10 (𝑖 = 1 → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
2524adantl 481 . . . . . . . . 9 ((𝐵𝑉𝑖 = 1) → (𝐵 = (𝐹𝑖) ↔ 𝐵 = (𝐹‘1)))
261tpf1ofv1 14515 . . . . . . . . . 10 (𝐵𝑉 → (𝐹‘1) = 𝐵)
2726eqcomd 2741 . . . . . . . . 9 (𝐵𝑉𝐵 = (𝐹‘1))
2822, 25, 27rspcedvd 3603 . . . . . . . 8 (𝐵𝑉 → ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖))
29 eqeq1 2739 . . . . . . . . 9 (𝑡 = 𝐵 → (𝑡 = (𝐹𝑖) ↔ 𝐵 = (𝐹𝑖)))
3029rexbidv 3164 . . . . . . . 8 (𝑡 = 𝐵 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐵 = (𝐹𝑖)))
3128, 30syl5ibrcom 247 . . . . . . 7 (𝐵𝑉 → (𝑡 = 𝐵 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
32 2nn0 12518 . . . . . . . . . . 11 2 ∈ ℕ0
33 2lt3 12412 . . . . . . . . . . 11 2 < 3
34 elfzo0 13717 . . . . . . . . . . 11 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
3532, 5, 33, 34mpbir3an 1342 . . . . . . . . . 10 2 ∈ (0..^3)
3635a1i 11 . . . . . . . . 9 (𝐶𝑉 → 2 ∈ (0..^3))
37 fveq2 6876 . . . . . . . . . . 11 (𝑖 = 2 → (𝐹𝑖) = (𝐹‘2))
3837eqeq2d 2746 . . . . . . . . . 10 (𝑖 = 2 → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
3938adantl 481 . . . . . . . . 9 ((𝐶𝑉𝑖 = 2) → (𝐶 = (𝐹𝑖) ↔ 𝐶 = (𝐹‘2)))
401tpf1ofv2 14516 . . . . . . . . . 10 (𝐶𝑉 → (𝐹‘2) = 𝐶)
4140eqcomd 2741 . . . . . . . . 9 (𝐶𝑉𝐶 = (𝐹‘2))
4236, 39, 41rspcedvd 3603 . . . . . . . 8 (𝐶𝑉 → ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖))
43 eqeq1 2739 . . . . . . . . 9 (𝑡 = 𝐶 → (𝑡 = (𝐹𝑖) ↔ 𝐶 = (𝐹𝑖)))
4443rexbidv 3164 . . . . . . . 8 (𝑡 = 𝐶 → (∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖) ↔ ∃𝑖 ∈ (0..^3)𝐶 = (𝐹𝑖)))
4542, 44syl5ibrcom 247 . . . . . . 7 (𝐶𝑉 → (𝑡 = 𝐶 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4617, 31, 453jaao 1435 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑡 = 𝐴𝑡 = 𝐵𝑡 = 𝐶) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
474, 46syl5com 31 . . . . 5 (𝑡 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4847, 2eleq2s 2852 . . . 4 (𝑡𝑇 → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
4948com12 32 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝑡𝑇 → ∃𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
5049ralrimiv 3131 . 2 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖))
51 dffo3 7092 . 2 (𝐹:(0..^3)–onto𝑇 ↔ (𝐹:(0..^3)⟶𝑇 ∧ ∀𝑡𝑇𝑖 ∈ (0..^3)𝑡 = (𝐹𝑖)))
523, 50, 51sylanbrc 583 1 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐹:(0..^3)–onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ifcif 4500  {ctp 4605   class class class wbr 5119  cmpt 5201  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cn 12240  2c2 12295  3c3 12296  0cn0 12501  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by:  tpf1o  14519
  Copyright terms: Public domain W3C validator