| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpf1ofv2 | Structured version Visualization version GIF version | ||
| Description: The value of a one-to-one function onto a triple at 2. (Contributed by AV, 20-Jul-2025.) |
| Ref | Expression |
|---|---|
| tpf1o.f | ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) |
| Ref | Expression |
|---|---|
| tpf1ofv2 | ⊢ (𝐶 ∈ 𝑉 → (𝐹‘2) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐹 = (𝑥 ∈ (0..^3) ↦ if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)))) |
| 3 | 2ne0 12250 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 4 | 3 | neii 2927 | . . . . . 6 ⊢ ¬ 2 = 0 |
| 5 | eqeq1 2733 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 = 0 ↔ 2 = 0)) | |
| 6 | 4, 5 | mtbiri 327 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 0) |
| 7 | 6 | iffalsed 4489 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) = if(𝑥 = 1, 𝐵, 𝐶)) |
| 8 | 1re 11134 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 9 | 1lt2 12312 | . . . . . . . 8 ⊢ 1 < 2 | |
| 10 | 8, 9 | gtneii 11246 | . . . . . . 7 ⊢ 2 ≠ 1 |
| 11 | 10 | neii 2927 | . . . . . 6 ⊢ ¬ 2 = 1 |
| 12 | eqeq1 2733 | . . . . . 6 ⊢ (𝑥 = 2 → (𝑥 = 1 ↔ 2 = 1)) | |
| 13 | 11, 12 | mtbiri 327 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
| 14 | 13 | iffalsed 4489 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐵, 𝐶) = 𝐶) |
| 15 | 7, 14 | eqtrd 2764 | . . 3 ⊢ (𝑥 = 2 → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) = 𝐶) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝑥 = 2) → if(𝑥 = 0, 𝐴, if(𝑥 = 1, 𝐵, 𝐶)) = 𝐶) |
| 17 | 2nn0 12419 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 18 | 3nn 12225 | . . . 4 ⊢ 3 ∈ ℕ | |
| 19 | 2lt3 12313 | . . . 4 ⊢ 2 < 3 | |
| 20 | elfzo0 13621 | . . . 4 ⊢ (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3)) | |
| 21 | 17, 18, 19, 20 | mpbir3an 1342 | . . 3 ⊢ 2 ∈ (0..^3) |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝐶 ∈ 𝑉 → 2 ∈ (0..^3)) |
| 23 | id 22 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
| 24 | 2, 16, 22, 23 | fvmptd 6941 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐹‘2) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 < clt 11168 ℕcn 12146 2c2 12201 3c3 12202 ℕ0cn0 12402 ..^cfzo 13575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: tpfo 14425 isgrtri 47926 |
| Copyright terms: Public domain | W3C validator |