| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0glem | Structured version Visualization version GIF version | ||
| Description: Neutral element property of ⨣. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| Ref | Expression |
|---|---|
| signsw0glem | ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11168 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4734 | . . . . 5 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34543 | . . . . 5 ⊢ ((0 ∈ {-1, 0, 1} ∧ 𝑢 ∈ {-1, 0, 1}) → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 5 | 2, 4 | mpan 690 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 6 | iftrue 4494 | . . . . . 6 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 0) | |
| 7 | id 22 | . . . . . 6 ⊢ (𝑢 = 0 → 𝑢 = 0) | |
| 8 | 6, 7 | eqtr4d 2767 | . . . . 5 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) |
| 9 | iffalse 4497 | . . . . 5 ⊢ (¬ 𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) | |
| 10 | 8, 9 | pm2.61i 182 | . . . 4 ⊢ if(𝑢 = 0, 0, 𝑢) = 𝑢 |
| 11 | 5, 10 | eqtrdi 2780 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = 𝑢) |
| 12 | 3 | signspval 34543 | . . . . 5 ⊢ ((𝑢 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 13 | 2, 12 | mpan2 691 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 14 | eqid 2729 | . . . . 5 ⊢ 0 = 0 | |
| 15 | 14 | iftruei 4495 | . . . 4 ⊢ if(0 = 0, 𝑢, 0) = 𝑢 |
| 16 | 13, 15 | eqtrdi 2780 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = 𝑢) |
| 17 | 11, 16 | jca 511 | . 2 ⊢ (𝑢 ∈ {-1, 0, 1} → ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
| 18 | 17 | rgen 3046 | 1 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4488 {ctp 4593 (class class class)co 7387 ∈ cmpo 7389 0cc0 11068 1c1 11069 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: signsw0g 34547 signswmnd 34548 |
| Copyright terms: Public domain | W3C validator |