| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0glem | Structured version Visualization version GIF version | ||
| Description: Neutral element property of ⨣. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| Ref | Expression |
|---|---|
| signsw0glem | ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11106 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4720 | . . . . 5 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34565 | . . . . 5 ⊢ ((0 ∈ {-1, 0, 1} ∧ 𝑢 ∈ {-1, 0, 1}) → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 5 | 2, 4 | mpan 690 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 6 | iftrue 4478 | . . . . . 6 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 0) | |
| 7 | id 22 | . . . . . 6 ⊢ (𝑢 = 0 → 𝑢 = 0) | |
| 8 | 6, 7 | eqtr4d 2769 | . . . . 5 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) |
| 9 | iffalse 4481 | . . . . 5 ⊢ (¬ 𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) | |
| 10 | 8, 9 | pm2.61i 182 | . . . 4 ⊢ if(𝑢 = 0, 0, 𝑢) = 𝑢 |
| 11 | 5, 10 | eqtrdi 2782 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = 𝑢) |
| 12 | 3 | signspval 34565 | . . . . 5 ⊢ ((𝑢 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 13 | 2, 12 | mpan2 691 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 14 | eqid 2731 | . . . . 5 ⊢ 0 = 0 | |
| 15 | 14 | iftruei 4479 | . . . 4 ⊢ if(0 = 0, 𝑢, 0) = 𝑢 |
| 16 | 13, 15 | eqtrdi 2782 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = 𝑢) |
| 17 | 11, 16 | jca 511 | . 2 ⊢ (𝑢 ∈ {-1, 0, 1} → ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
| 18 | 17 | rgen 3049 | 1 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4472 {ctp 4577 (class class class)co 7346 ∈ cmpo 7348 0cc0 11006 1c1 11007 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: signsw0g 34569 signswmnd 34570 |
| Copyright terms: Public domain | W3C validator |