![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0glem | Structured version Visualization version GIF version |
Description: Neutral element property of ⨣. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
Ref | Expression |
---|---|
signsw0glem | ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11262 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | tpid2 4778 | . . . . 5 ⊢ 0 ∈ {-1, 0, 1} |
3 | signsw.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
4 | 3 | signspval 34560 | . . . . 5 ⊢ ((0 ∈ {-1, 0, 1} ∧ 𝑢 ∈ {-1, 0, 1}) → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
5 | 2, 4 | mpan 690 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
6 | iftrue 4540 | . . . . . 6 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 0) | |
7 | id 22 | . . . . . 6 ⊢ (𝑢 = 0 → 𝑢 = 0) | |
8 | 6, 7 | eqtr4d 2780 | . . . . 5 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) |
9 | iffalse 4543 | . . . . 5 ⊢ (¬ 𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) | |
10 | 8, 9 | pm2.61i 182 | . . . 4 ⊢ if(𝑢 = 0, 0, 𝑢) = 𝑢 |
11 | 5, 10 | eqtrdi 2793 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = 𝑢) |
12 | 3 | signspval 34560 | . . . . 5 ⊢ ((𝑢 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
13 | 2, 12 | mpan2 691 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
14 | eqid 2737 | . . . . 5 ⊢ 0 = 0 | |
15 | 14 | iftruei 4541 | . . . 4 ⊢ if(0 = 0, 𝑢, 0) = 𝑢 |
16 | 13, 15 | eqtrdi 2793 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = 𝑢) |
17 | 11, 16 | jca 511 | . 2 ⊢ (𝑢 ∈ {-1, 0, 1} → ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
18 | 17 | rgen 3063 | 1 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ifcif 4534 {ctp 4638 (class class class)co 7438 ∈ cmpo 7440 0cc0 11162 1c1 11163 -cneg 11500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-mulcl 11224 ax-i2m1 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 |
This theorem is referenced by: signsw0g 34564 signswmnd 34565 |
Copyright terms: Public domain | W3C validator |