Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsw0glem Structured version   Visualization version   GIF version

Theorem signsw0glem 34544
Description: Neutral element property of . (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypothesis
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
Assertion
Ref Expression
signsw0glem 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
Distinct variable group:   𝑎,𝑏,𝑢
Allowed substitution hints:   (𝑢,𝑎,𝑏)

Proof of Theorem signsw0glem
StepHypRef Expression
1 c0ex 11168 . . . . . 6 0 ∈ V
21tpid2 4734 . . . . 5 0 ∈ {-1, 0, 1}
3 signsw.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
43signspval 34543 . . . . 5 ((0 ∈ {-1, 0, 1} ∧ 𝑢 ∈ {-1, 0, 1}) → (0 𝑢) = if(𝑢 = 0, 0, 𝑢))
52, 4mpan 690 . . . 4 (𝑢 ∈ {-1, 0, 1} → (0 𝑢) = if(𝑢 = 0, 0, 𝑢))
6 iftrue 4494 . . . . . 6 (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 0)
7 id 22 . . . . . 6 (𝑢 = 0 → 𝑢 = 0)
86, 7eqtr4d 2767 . . . . 5 (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢)
9 iffalse 4497 . . . . 5 𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢)
108, 9pm2.61i 182 . . . 4 if(𝑢 = 0, 0, 𝑢) = 𝑢
115, 10eqtrdi 2780 . . 3 (𝑢 ∈ {-1, 0, 1} → (0 𝑢) = 𝑢)
123signspval 34543 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑢 0) = if(0 = 0, 𝑢, 0))
132, 12mpan2 691 . . . 4 (𝑢 ∈ {-1, 0, 1} → (𝑢 0) = if(0 = 0, 𝑢, 0))
14 eqid 2729 . . . . 5 0 = 0
1514iftruei 4495 . . . 4 if(0 = 0, 𝑢, 0) = 𝑢
1613, 15eqtrdi 2780 . . 3 (𝑢 ∈ {-1, 0, 1} → (𝑢 0) = 𝑢)
1711, 16jca 511 . 2 (𝑢 ∈ {-1, 0, 1} → ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢))
1817rgen 3046 1 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  ifcif 4488  {ctp 4593  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069  -cneg 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  signsw0g  34547  signswmnd  34548
  Copyright terms: Public domain W3C validator