| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsw0glem | Structured version Visualization version GIF version | ||
| Description: Neutral element property of ⨣. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsw.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| Ref | Expression |
|---|---|
| signsw0glem | ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11237 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | tpid2 4750 | . . . . 5 ⊢ 0 ∈ {-1, 0, 1} |
| 3 | signsw.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 4 | 3 | signspval 34526 | . . . . 5 ⊢ ((0 ∈ {-1, 0, 1} ∧ 𝑢 ∈ {-1, 0, 1}) → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 5 | 2, 4 | mpan 690 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = if(𝑢 = 0, 0, 𝑢)) |
| 6 | iftrue 4511 | . . . . . 6 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 0) | |
| 7 | id 22 | . . . . . 6 ⊢ (𝑢 = 0 → 𝑢 = 0) | |
| 8 | 6, 7 | eqtr4d 2772 | . . . . 5 ⊢ (𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) |
| 9 | iffalse 4514 | . . . . 5 ⊢ (¬ 𝑢 = 0 → if(𝑢 = 0, 0, 𝑢) = 𝑢) | |
| 10 | 8, 9 | pm2.61i 182 | . . . 4 ⊢ if(𝑢 = 0, 0, 𝑢) = 𝑢 |
| 11 | 5, 10 | eqtrdi 2785 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (0 ⨣ 𝑢) = 𝑢) |
| 12 | 3 | signspval 34526 | . . . . 5 ⊢ ((𝑢 ∈ {-1, 0, 1} ∧ 0 ∈ {-1, 0, 1}) → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 13 | 2, 12 | mpan2 691 | . . . 4 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = if(0 = 0, 𝑢, 0)) |
| 14 | eqid 2734 | . . . . 5 ⊢ 0 = 0 | |
| 15 | 14 | iftruei 4512 | . . . 4 ⊢ if(0 = 0, 𝑢, 0) = 𝑢 |
| 16 | 13, 15 | eqtrdi 2785 | . . 3 ⊢ (𝑢 ∈ {-1, 0, 1} → (𝑢 ⨣ 0) = 𝑢) |
| 17 | 11, 16 | jca 511 | . 2 ⊢ (𝑢 ∈ {-1, 0, 1} → ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢)) |
| 18 | 17 | rgen 3052 | 1 ⊢ ∀𝑢 ∈ {-1, 0, 1} ((0 ⨣ 𝑢) = 𝑢 ∧ (𝑢 ⨣ 0) = 𝑢) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ifcif 4505 {ctp 4610 (class class class)co 7413 ∈ cmpo 7415 0cc0 11137 1c1 11138 -cneg 11475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-mulcl 11199 ax-i2m1 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: signsw0g 34530 signswmnd 34531 |
| Copyright terms: Public domain | W3C validator |