Proof of Theorem elwwlks2ons3im
| Step | Hyp | Ref
| Expression |
| 1 | | wwlks2onv.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | 1 | wwlksonvtx 29842 |
. 2
⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 3 | | wwlknon 29844 |
. . 3
⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶)) |
| 4 | | wwlknbp1 29831 |
. . . . 5
⊢ (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈
ℕ0 ∧ 𝑊
∈ Word (Vtx‘𝐺)
∧ (♯‘𝑊) =
(2 + 1))) |
| 5 | | 2p1e3 12387 |
. . . . . . . 8
⊢ (2 + 1) =
3 |
| 6 | 5 | eqeq2i 2749 |
. . . . . . 7
⊢
((♯‘𝑊) =
(2 + 1) ↔ (♯‘𝑊) = 3) |
| 7 | | 1ex 11236 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
V |
| 8 | 7 | tpid2 4751 |
. . . . . . . . . . . . 13
⊢ 1 ∈
{0, 1, 2} |
| 9 | | fzo0to3tp 13773 |
. . . . . . . . . . . . 13
⊢ (0..^3) =
{0, 1, 2} |
| 10 | 8, 9 | eleqtrri 2834 |
. . . . . . . . . . . 12
⊢ 1 ∈
(0..^3) |
| 11 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊) =
3 → (0..^(♯‘𝑊)) = (0..^3)) |
| 12 | 10, 11 | eleqtrrid 2842 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
3 → 1 ∈ (0..^(♯‘𝑊))) |
| 13 | | wrdsymbcl 14550 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈
(0..^(♯‘𝑊)))
→ (𝑊‘1) ∈
(Vtx‘𝐺)) |
| 14 | 12, 13 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺)) |
| 15 | 14 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺)) |
| 16 | | simpl1r 1226 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3) |
| 17 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴) |
| 18 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1)) |
| 19 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶) |
| 20 | 17, 18, 19 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢ (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶)) |
| 21 | 20 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶)) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶)) |
| 23 | 1 | eqcomi 2745 |
. . . . . . . . . . . . . . . . . 18
⊢
(Vtx‘𝐺) =
𝑉 |
| 24 | 23 | wrdeqi 14560 |
. . . . . . . . . . . . . . . . 17
⊢ Word
(Vtx‘𝐺) = Word 𝑉 |
| 25 | 24 | eleq2i 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉) |
| 26 | 25 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉) |
| 28 | 27 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Word 𝑉) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉) |
| 30 | | simpl3l 1229 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴 ∈ 𝑉) |
| 31 | 23 | eleq2i 2827 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘1) ∈
(Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉) |
| 32 | 31 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ ((𝑊‘1) ∈
(Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉) |
| 34 | | simpl3r 1230 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶 ∈ 𝑉) |
| 35 | | eqwrds3 14985 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝐴 ∈ 𝑉 ∧ (𝑊‘1) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶)))) |
| 36 | 29, 30, 33, 34, 35 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶)))) |
| 37 | 16, 22, 36 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) |
| 38 | 37, 33 | jca 511 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
| 39 | 15, 38 | mpdan 687 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
| 40 | 39 | 3exp 1119 |
. . . . . . 7
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)))) |
| 41 | 6, 40 | sylan2b 594 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)))) |
| 42 | 41 | 3adant1 1130 |
. . . . 5
⊢ ((2
∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)))) |
| 43 | 4, 42 | syl 17 |
. . . 4
⊢ (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)))) |
| 44 | 43 | 3impib 1116 |
. . 3
⊢ ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) |
| 45 | 3, 44 | sylbi 217 |
. 2
⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) |
| 46 | 2, 45 | mpd 15 |
1
⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |