MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3im Structured version   Visualization version   GIF version

Theorem elwwlks2ons3im 28220
Description: A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3im (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))

Proof of Theorem elwwlks2ons3im
StepHypRef Expression
1 wwlks2onv.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 28121 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
3 wwlknon 28123 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶))
4 wwlknbp1 28110 . . . . 5 (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)))
5 2p1e3 12045 . . . . . . . 8 (2 + 1) = 3
65eqeq2i 2751 . . . . . . 7 ((♯‘𝑊) = (2 + 1) ↔ (♯‘𝑊) = 3)
7 1ex 10902 . . . . . . . . . . . . . 14 1 ∈ V
87tpid2 4703 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
9 fzo0to3tp 13401 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
108, 9eleqtrri 2838 . . . . . . . . . . . 12 1 ∈ (0..^3)
11 oveq2 7263 . . . . . . . . . . . 12 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
1210, 11eleqtrrid 2846 . . . . . . . . . . 11 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 14158 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1412, 13sylan2 592 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
15143ad2ant1 1131 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
16 simpl1r 1223 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3)
17 simpl 482 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
18 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
19 simpr 484 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2017, 18, 193jca 1126 . . . . . . . . . . . . 13 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
21203ad2ant2 1132 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2221adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
231eqcomi 2747 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = 𝑉
2423wrdeqi 14168 . . . . . . . . . . . . . . . . 17 Word (Vtx‘𝐺) = Word 𝑉
2524eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2625biimpi 215 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
28273ad2ant1 1131 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
2928adantr 480 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
30 simpl3l 1226 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3123eleq2i 2830 . . . . . . . . . . . . . 14 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3231biimpi 215 . . . . . . . . . . . . 13 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3332adantl 481 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
34 simpl3r 1227 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
35 eqwrds3 14604 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3629, 30, 33, 34, 35syl13anc 1370 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3716, 22, 36mpbir2and 709 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
3837, 33jca 511 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
3915, 38mpdan 683 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
40393exp 1117 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
416, 40sylan2b 593 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
42413adant1 1128 . . . . 5 ((2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
434, 42syl 17 . . . 4 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
44433impib 1114 . . 3 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
453, 44sylbi 216 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
462, 45mpd 15 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {ctp 4562  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  2c2 11958  3c3 11959  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs3 14483  Vtxcvtx 27269   WWalksN cwwlksn 28092   WWalksNOn cwwlksnon 28093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098
This theorem is referenced by:  elwwlks2ons3  28221
  Copyright terms: Public domain W3C validator