MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3im Structured version   Visualization version   GIF version

Theorem elwwlks2ons3im 29891
Description: A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3im (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))

Proof of Theorem elwwlks2ons3im
StepHypRef Expression
1 wwlks2onv.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 29792 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
3 wwlknon 29794 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶))
4 wwlknbp1 29781 . . . . 5 (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)))
5 2p1e3 12408 . . . . . . . 8 (2 + 1) = 3
65eqeq2i 2739 . . . . . . 7 ((♯‘𝑊) = (2 + 1) ↔ (♯‘𝑊) = 3)
7 1ex 11262 . . . . . . . . . . . . . 14 1 ∈ V
87tpid2 4779 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
9 fzo0to3tp 13774 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
108, 9eleqtrri 2825 . . . . . . . . . . . 12 1 ∈ (0..^3)
11 oveq2 7434 . . . . . . . . . . . 12 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
1210, 11eleqtrrid 2833 . . . . . . . . . . 11 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 14537 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1412, 13sylan2 591 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
15143ad2ant1 1130 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
16 simpl1r 1222 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3)
17 simpl 481 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
18 eqidd 2727 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
19 simpr 483 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2017, 18, 193jca 1125 . . . . . . . . . . . . 13 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
21203ad2ant2 1131 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2221adantr 479 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
231eqcomi 2735 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = 𝑉
2423wrdeqi 14547 . . . . . . . . . . . . . . . . 17 Word (Vtx‘𝐺) = Word 𝑉
2524eleq2i 2818 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2625biimpi 215 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
2726adantr 479 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
28273ad2ant1 1130 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
2928adantr 479 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
30 simpl3l 1225 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3123eleq2i 2818 . . . . . . . . . . . . . 14 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3231biimpi 215 . . . . . . . . . . . . 13 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3332adantl 480 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
34 simpl3r 1226 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
35 eqwrds3 14972 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3629, 30, 33, 34, 35syl13anc 1369 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3716, 22, 36mpbir2and 711 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
3837, 33jca 510 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
3915, 38mpdan 685 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
40393exp 1116 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
416, 40sylan2b 592 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
42413adant1 1127 . . . . 5 ((2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
434, 42syl 17 . . . 4 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
44433impib 1113 . . 3 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
453, 44sylbi 216 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
462, 45mpd 15 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  {ctp 4637  cfv 6556  (class class class)co 7426  0cc0 11160  1c1 11161   + caddc 11163  2c2 12321  3c3 12322  0cn0 12526  ..^cfzo 13683  chash 14349  Word cword 14524  ⟨“cs3 14853  Vtxcvtx 28935   WWalksN cwwlksn 29763   WWalksNOn cwwlksnon 29764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-fzo 13684  df-hash 14350  df-word 14525  df-concat 14581  df-s1 14606  df-s2 14859  df-s3 14860  df-wwlks 29767  df-wwlksn 29768  df-wwlksnon 29769
This theorem is referenced by:  elwwlks2ons3  29892
  Copyright terms: Public domain W3C validator