MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3im Structured version   Visualization version   GIF version

Theorem elwwlks2ons3im 28319
Description: A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3im (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))

Proof of Theorem elwwlks2ons3im
StepHypRef Expression
1 wwlks2onv.v . . 3 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 28220 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
3 wwlknon 28222 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶))
4 wwlknbp1 28209 . . . . 5 (𝑊 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)))
5 2p1e3 12115 . . . . . . . 8 (2 + 1) = 3
65eqeq2i 2751 . . . . . . 7 ((♯‘𝑊) = (2 + 1) ↔ (♯‘𝑊) = 3)
7 1ex 10971 . . . . . . . . . . . . . 14 1 ∈ V
87tpid2 4706 . . . . . . . . . . . . 13 1 ∈ {0, 1, 2}
9 fzo0to3tp 13473 . . . . . . . . . . . . 13 (0..^3) = {0, 1, 2}
108, 9eleqtrri 2838 . . . . . . . . . . . 12 1 ∈ (0..^3)
11 oveq2 7283 . . . . . . . . . . . 12 ((♯‘𝑊) = 3 → (0..^(♯‘𝑊)) = (0..^3))
1210, 11eleqtrrid 2846 . . . . . . . . . . 11 ((♯‘𝑊) = 3 → 1 ∈ (0..^(♯‘𝑊)))
13 wrdsymbcl 14230 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ∈ (0..^(♯‘𝑊))) → (𝑊‘1) ∈ (Vtx‘𝐺))
1412, 13sylan2 593 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (𝑊‘1) ∈ (Vtx‘𝐺))
15143ad2ant1 1132 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊‘1) ∈ (Vtx‘𝐺))
16 simpl1r 1224 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (♯‘𝑊) = 3)
17 simpl 483 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘0) = 𝐴)
18 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘1) = (𝑊‘1))
19 simpr 485 . . . . . . . . . . . . . 14 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → (𝑊‘2) = 𝐶)
2017, 18, 193jca 1127 . . . . . . . . . . . . 13 (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
21203ad2ant2 1133 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
2221adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))
231eqcomi 2747 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = 𝑉
2423wrdeqi 14240 . . . . . . . . . . . . . . . . 17 Word (Vtx‘𝐺) = Word 𝑉
2524eleq2i 2830 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word (Vtx‘𝐺) ↔ 𝑊 ∈ Word 𝑉)
2625biimpi 215 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
2726adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → 𝑊 ∈ Word 𝑉)
28273ad2ant1 1132 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → 𝑊 ∈ Word 𝑉)
2928adantr 481 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word 𝑉)
30 simpl3l 1227 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐴𝑉)
3123eleq2i 2830 . . . . . . . . . . . . . 14 ((𝑊‘1) ∈ (Vtx‘𝐺) ↔ (𝑊‘1) ∈ 𝑉)
3231biimpi 215 . . . . . . . . . . . . 13 ((𝑊‘1) ∈ (Vtx‘𝐺) → (𝑊‘1) ∈ 𝑉)
3332adantl 482 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊‘1) ∈ 𝑉)
34 simpl3r 1228 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝐶𝑉)
35 eqwrds3 14676 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉 ∧ (𝑊‘1) ∈ 𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3629, 30, 33, 34, 35syl13anc 1371 . . . . . . . . . . 11 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ↔ ((♯‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = (𝑊‘1) ∧ (𝑊‘2) = 𝐶))))
3716, 22, 36mpbir2and 710 . . . . . . . . . 10 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
3837, 33jca 512 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) ∧ (𝑊‘1) ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
3915, 38mpdan 684 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) ∧ (𝐴𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
40393exp 1118 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 3) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
416, 40sylan2b 594 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
42413adant1 1129 . . . . 5 ((2 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (2 + 1)) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
434, 42syl 17 . . . 4 (𝑊 ∈ (2 WWalksN 𝐺) → (((𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))))
44433impib 1115 . . 3 ((𝑊 ∈ (2 WWalksN 𝐺) ∧ (𝑊‘0) = 𝐴 ∧ (𝑊‘2) = 𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
453, 44sylbi 216 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝐴𝑉𝐶𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
462, 45mpd 15 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {ctp 4565  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  2c2 12028  3c3 12029  0cn0 12233  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs3 14555  Vtxcvtx 27366   WWalksN cwwlksn 28191   WWalksNOn cwwlksnon 28192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197
This theorem is referenced by:  elwwlks2ons3  28320
  Copyright terms: Public domain W3C validator