| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlks2onv | Structured version Visualization version GIF version | ||
| Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wwlks2onv | ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlks2onv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | wwlksonvtx 29837 | . . 3 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 4 | simprl 770 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 5 | wwlknon 29839 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) | |
| 6 | wwlknbp1 29826 | . . . . . . . 8 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1))) | |
| 7 | s3fv1 14911 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ 𝑈 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
| 8 | 7 | eqcomd 2741 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ 𝑈 → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 9 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 10 | 1 | eqcomi 2744 | . . . . . . . . . . . . . . . 16 ⊢ (Vtx‘𝐺) = 𝑉 |
| 11 | 10 | wrdeqi 14555 | . . . . . . . . . . . . . . 15 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
| 12 | 11 | eleq2i 2826 | . . . . . . . . . . . . . 14 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
| 13 | 12 | biimpi 216 | . . . . . . . . . . . . 13 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
| 14 | 1ex 11231 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
| 15 | 14 | tpid2 4746 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {0, 1, 2} |
| 16 | s3len 14913 | . . . . . . . . . . . . . . . 16 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
| 17 | 16 | oveq2i 7416 | . . . . . . . . . . . . . . 15 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
| 18 | fzo0to3tp 13768 | . . . . . . . . . . . . . . 15 ⊢ (0..^3) = {0, 1, 2} | |
| 19 | 17, 18 | eqtri 2758 | . . . . . . . . . . . . . 14 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = {0, 1, 2} |
| 20 | 15, 19 | eleqtrri 2833 | . . . . . . . . . . . . 13 ⊢ 1 ∈ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) |
| 21 | wrdsymbcl 14545 | . . . . . . . . . . . . 13 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘〈“𝐴𝐵𝐶”〉))) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) | |
| 22 | 13, 20, 21 | sylancl 586 | . . . . . . . . . . . 12 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
| 23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
| 24 | 9, 23 | eqeltrd 2834 | . . . . . . . . . 10 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑉) |
| 25 | 24 | ex 412 | . . . . . . . . 9 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 26 | 25 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1)) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 27 | 6, 26 | syl 17 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 29 | 5, 28 | sylbi 217 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 30 | 29 | impcom 407 | . . . 4 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵 ∈ 𝑉) |
| 31 | 30 | adantr 480 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
| 32 | simprr 772 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 33 | 4, 31, 32 | 3jca 1128 | . 2 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 34 | 3, 33 | mpdan 687 | 1 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {ctp 4605 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 2c2 12295 3c3 12296 ℕ0cn0 12501 ..^cfzo 13671 ♯chash 14348 Word cword 14531 〈“cs3 14861 Vtxcvtx 28975 WWalksN cwwlksn 29808 WWalksNOn cwwlksnon 29809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-wwlks 29812 df-wwlksn 29813 df-wwlksnon 29814 |
| This theorem is referenced by: frgr2wwlkeqm 30312 |
| Copyright terms: Public domain | W3C validator |