MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onv Structured version   Visualization version   GIF version

Theorem wwlks2onv 29935
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onv ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))

Proof of Theorem wwlks2onv
StepHypRef Expression
1 wwlks2onv.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 29837 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
32adantl 481 . 2 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐶𝑉))
4 simprl 770 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 wwlknon 29839 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
6 wwlknbp1 29826 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)))
7 s3fv1 14911 . . . . . . . . . . . . 13 (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
87eqcomd 2741 . . . . . . . . . . . 12 (𝐵𝑈𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
98adantl 481 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
101eqcomi 2744 . . . . . . . . . . . . . . . 16 (Vtx‘𝐺) = 𝑉
1110wrdeqi 14555 . . . . . . . . . . . . . . 15 Word (Vtx‘𝐺) = Word 𝑉
1211eleq2i 2826 . . . . . . . . . . . . . 14 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
1312biimpi 216 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
14 1ex 11231 . . . . . . . . . . . . . . 15 1 ∈ V
1514tpid2 4746 . . . . . . . . . . . . . 14 1 ∈ {0, 1, 2}
16 s3len 14913 . . . . . . . . . . . . . . . 16 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
1716oveq2i 7416 . . . . . . . . . . . . . . 15 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
18 fzo0to3tp 13768 . . . . . . . . . . . . . . 15 (0..^3) = {0, 1, 2}
1917, 18eqtri 2758 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
2015, 19eleqtrri 2833 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))
21 wrdsymbcl 14545 . . . . . . . . . . . . 13 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2213, 20, 21sylancl 586 . . . . . . . . . . . 12 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2322adantr 480 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
249, 23eqeltrd 2834 . . . . . . . . . 10 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵𝑉)
2524ex 412 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (𝐵𝑈𝐵𝑉))
26253ad2ant2 1134 . . . . . . . 8 ((2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (𝐵𝑈𝐵𝑉))
276, 26syl 17 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (𝐵𝑈𝐵𝑉))
28273ad2ant1 1133 . . . . . 6 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) → (𝐵𝑈𝐵𝑉))
295, 28sylbi 217 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈𝐵𝑉))
3029impcom 407 . . . 4 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵𝑉)
3130adantr 480 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐵𝑉)
32 simprr 772 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
334, 31, 323jca 1128 . 2 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
343, 33mpdan 687 1 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {ctp 4605  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  2c2 12295  3c3 12296  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531  ⟨“cs3 14861  Vtxcvtx 28975   WWalksN cwwlksn 29808   WWalksNOn cwwlksnon 29809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814
This theorem is referenced by:  frgr2wwlkeqm  30312
  Copyright terms: Public domain W3C validator