| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlks2onv | Structured version Visualization version GIF version | ||
| Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wwlks2onv | ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlks2onv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | wwlksonvtx 29835 | . . 3 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 4 | simprl 770 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 5 | wwlknon 29837 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) | |
| 6 | wwlknbp1 29824 | . . . . . . . 8 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1))) | |
| 7 | s3fv1 14834 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ 𝑈 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
| 8 | 7 | eqcomd 2735 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ 𝑈 → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 9 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
| 10 | 1 | eqcomi 2738 | . . . . . . . . . . . . . . . 16 ⊢ (Vtx‘𝐺) = 𝑉 |
| 11 | 10 | wrdeqi 14478 | . . . . . . . . . . . . . . 15 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
| 12 | 11 | eleq2i 2820 | . . . . . . . . . . . . . 14 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
| 13 | 12 | biimpi 216 | . . . . . . . . . . . . 13 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
| 14 | 1ex 11146 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
| 15 | 14 | tpid2 4730 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {0, 1, 2} |
| 16 | s3len 14836 | . . . . . . . . . . . . . . . 16 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 | |
| 17 | 16 | oveq2i 7380 | . . . . . . . . . . . . . . 15 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
| 18 | fzo0to3tp 13689 | . . . . . . . . . . . . . . 15 ⊢ (0..^3) = {0, 1, 2} | |
| 19 | 17, 18 | eqtri 2752 | . . . . . . . . . . . . . 14 ⊢ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) = {0, 1, 2} |
| 20 | 15, 19 | eleqtrri 2827 | . . . . . . . . . . . . 13 ⊢ 1 ∈ (0..^(♯‘〈“𝐴𝐵𝐶”〉)) |
| 21 | wrdsymbcl 14468 | . . . . . . . . . . . . 13 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘〈“𝐴𝐵𝐶”〉))) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) | |
| 22 | 13, 20, 21 | sylancl 586 | . . . . . . . . . . . 12 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
| 23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
| 24 | 9, 23 | eqeltrd 2828 | . . . . . . . . . 10 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑉) |
| 25 | 24 | ex 412 | . . . . . . . . 9 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 26 | 25 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (♯‘〈“𝐴𝐵𝐶”〉) = (2 + 1)) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 27 | 6, 26 | syl 17 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 29 | 5, 28 | sylbi 217 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
| 30 | 29 | impcom 407 | . . . 4 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵 ∈ 𝑉) |
| 31 | 30 | adantr 480 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
| 32 | simprr 772 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 33 | 4, 31, 32 | 3jca 1128 | . 2 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 34 | 3, 33 | mpdan 687 | 1 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {ctp 4589 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 ℕ0cn0 12418 ..^cfzo 13591 ♯chash 14271 Word cword 14454 〈“cs3 14784 Vtxcvtx 28976 WWalksN cwwlksn 29806 WWalksNOn cwwlksnon 29807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-wwlks 29810 df-wwlksn 29811 df-wwlksnon 29812 |
| This theorem is referenced by: frgr2wwlkeqm 30310 |
| Copyright terms: Public domain | W3C validator |