MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onv Structured version   Visualization version   GIF version

Theorem wwlks2onv 29973
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onv ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))

Proof of Theorem wwlks2onv
StepHypRef Expression
1 wwlks2onv.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 29875 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
32adantl 481 . 2 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐶𝑉))
4 simprl 771 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 wwlknon 29877 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
6 wwlknbp1 29864 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)))
7 s3fv1 14931 . . . . . . . . . . . . 13 (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
87eqcomd 2743 . . . . . . . . . . . 12 (𝐵𝑈𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
98adantl 481 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
101eqcomi 2746 . . . . . . . . . . . . . . . 16 (Vtx‘𝐺) = 𝑉
1110wrdeqi 14575 . . . . . . . . . . . . . . 15 Word (Vtx‘𝐺) = Word 𝑉
1211eleq2i 2833 . . . . . . . . . . . . . 14 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
1312biimpi 216 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
14 1ex 11257 . . . . . . . . . . . . . . 15 1 ∈ V
1514tpid2 4770 . . . . . . . . . . . . . 14 1 ∈ {0, 1, 2}
16 s3len 14933 . . . . . . . . . . . . . . . 16 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
1716oveq2i 7442 . . . . . . . . . . . . . . 15 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
18 fzo0to3tp 13791 . . . . . . . . . . . . . . 15 (0..^3) = {0, 1, 2}
1917, 18eqtri 2765 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
2015, 19eleqtrri 2840 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))
21 wrdsymbcl 14565 . . . . . . . . . . . . 13 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2213, 20, 21sylancl 586 . . . . . . . . . . . 12 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2322adantr 480 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
249, 23eqeltrd 2841 . . . . . . . . . 10 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵𝑉)
2524ex 412 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (𝐵𝑈𝐵𝑉))
26253ad2ant2 1135 . . . . . . . 8 ((2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (𝐵𝑈𝐵𝑉))
276, 26syl 17 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (𝐵𝑈𝐵𝑉))
28273ad2ant1 1134 . . . . . 6 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) → (𝐵𝑈𝐵𝑉))
295, 28sylbi 217 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈𝐵𝑉))
3029impcom 407 . . . 4 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵𝑉)
3130adantr 480 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐵𝑉)
32 simprr 773 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
334, 31, 323jca 1129 . 2 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
343, 33mpdan 687 1 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {ctp 4630  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  2c2 12321  3c3 12322  0cn0 12526  ..^cfzo 13694  chash 14369  Word cword 14552  ⟨“cs3 14881  Vtxcvtx 29013   WWalksN cwwlksn 29846   WWalksNOn cwwlksnon 29847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-wwlks 29850  df-wwlksn 29851  df-wwlksnon 29852
This theorem is referenced by:  frgr2wwlkeqm  30350
  Copyright terms: Public domain W3C validator