MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onv Structured version   Visualization version   GIF version

Theorem wwlks2onv 27734
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onv ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))

Proof of Theorem wwlks2onv
StepHypRef Expression
1 wwlks2onv.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 27635 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
32adantl 484 . 2 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐶𝑉))
4 simprl 769 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 wwlknon 27637 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
6 wwlknbp1 27624 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)))
7 s3fv1 14256 . . . . . . . . . . . . 13 (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
87eqcomd 2829 . . . . . . . . . . . 12 (𝐵𝑈𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
98adantl 484 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
101eqcomi 2832 . . . . . . . . . . . . . . . 16 (Vtx‘𝐺) = 𝑉
1110wrdeqi 13889 . . . . . . . . . . . . . . 15 Word (Vtx‘𝐺) = Word 𝑉
1211eleq2i 2906 . . . . . . . . . . . . . 14 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
1312biimpi 218 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
14 1ex 10639 . . . . . . . . . . . . . . 15 1 ∈ V
1514tpid2 4708 . . . . . . . . . . . . . 14 1 ∈ {0, 1, 2}
16 s3len 14258 . . . . . . . . . . . . . . . 16 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
1716oveq2i 7169 . . . . . . . . . . . . . . 15 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
18 fzo0to3tp 13126 . . . . . . . . . . . . . . 15 (0..^3) = {0, 1, 2}
1917, 18eqtri 2846 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
2015, 19eleqtrri 2914 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))
21 wrdsymbcl 13878 . . . . . . . . . . . . 13 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2213, 20, 21sylancl 588 . . . . . . . . . . . 12 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2322adantr 483 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
249, 23eqeltrd 2915 . . . . . . . . . 10 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵𝑉)
2524ex 415 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (𝐵𝑈𝐵𝑉))
26253ad2ant2 1130 . . . . . . . 8 ((2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (𝐵𝑈𝐵𝑉))
276, 26syl 17 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (𝐵𝑈𝐵𝑉))
28273ad2ant1 1129 . . . . . 6 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) → (𝐵𝑈𝐵𝑉))
295, 28sylbi 219 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈𝐵𝑉))
3029impcom 410 . . . 4 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵𝑉)
3130adantr 483 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐵𝑉)
32 simprr 771 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
334, 31, 323jca 1124 . 2 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
343, 33mpdan 685 1 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {ctp 4573  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  2c2 11695  3c3 11696  0cn0 11900  ..^cfzo 13036  chash 13693  Word cword 13864  ⟨“cs3 14206  Vtxcvtx 26783   WWalksN cwwlksn 27606   WWalksNOn cwwlksnon 27607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-wwlks 27610  df-wwlksn 27611  df-wwlksnon 27612
This theorem is referenced by:  frgr2wwlkeqm  28112
  Copyright terms: Public domain W3C validator