MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onv Structured version   Visualization version   GIF version

Theorem wwlks2onv 28605
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onv ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))

Proof of Theorem wwlks2onv
StepHypRef Expression
1 wwlks2onv.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksonvtx 28507 . . 3 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴𝑉𝐶𝑉))
32adantl 483 . 2 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐶𝑉))
4 simprl 769 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐴𝑉)
5 wwlknon 28509 . . . . . 6 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶))
6 wwlknbp1 28496 . . . . . . . 8 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)))
7 s3fv1 14704 . . . . . . . . . . . . 13 (𝐵𝑈 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
87eqcomd 2743 . . . . . . . . . . . 12 (𝐵𝑈𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
98adantl 483 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵 = (⟨“𝐴𝐵𝐶”⟩‘1))
101eqcomi 2746 . . . . . . . . . . . . . . . 16 (Vtx‘𝐺) = 𝑉
1110wrdeqi 14344 . . . . . . . . . . . . . . 15 Word (Vtx‘𝐺) = Word 𝑉
1211eleq2i 2829 . . . . . . . . . . . . . 14 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
1312biimpi 215 . . . . . . . . . . . . 13 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
14 1ex 11076 . . . . . . . . . . . . . . 15 1 ∈ V
1514tpid2 4722 . . . . . . . . . . . . . 14 1 ∈ {0, 1, 2}
16 s3len 14706 . . . . . . . . . . . . . . . 16 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
1716oveq2i 7352 . . . . . . . . . . . . . . 15 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = (0..^3)
18 fzo0to3tp 13578 . . . . . . . . . . . . . . 15 (0..^3) = {0, 1, 2}
1917, 18eqtri 2765 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐴𝐵𝐶”⟩)) = {0, 1, 2}
2015, 19eleqtrri 2837 . . . . . . . . . . . . 13 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))
21 wrdsymbcl 14334 . . . . . . . . . . . . 13 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0..^(♯‘⟨“𝐴𝐵𝐶”⟩))) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2213, 20, 21sylancl 587 . . . . . . . . . . . 12 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
2322adantr 482 . . . . . . . . . . 11 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → (⟨“𝐴𝐵𝐶”⟩‘1) ∈ 𝑉)
249, 23eqeltrd 2838 . . . . . . . . . 10 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝐵𝑈) → 𝐵𝑉)
2524ex 414 . . . . . . . . 9 (⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) → (𝐵𝑈𝐵𝑉))
26253ad2ant2 1134 . . . . . . . 8 ((2 ∈ ℕ0 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘⟨“𝐴𝐵𝐶”⟩) = (2 + 1)) → (𝐵𝑈𝐵𝑉))
276, 26syl 17 . . . . . . 7 (⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) → (𝐵𝑈𝐵𝑉))
28273ad2ant1 1133 . . . . . 6 ((⟨“𝐴𝐵𝐶”⟩ ∈ (2 WWalksN 𝐺) ∧ (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴 ∧ (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶) → (𝐵𝑈𝐵𝑉))
295, 28sylbi 216 . . . . 5 (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵𝑈𝐵𝑉))
3029impcom 409 . . . 4 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵𝑉)
3130adantr 482 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐵𝑉)
32 simprr 771 . . 3 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → 𝐶𝑉)
334, 31, 323jca 1128 . 2 (((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴𝑉𝐶𝑉)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
343, 33mpdan 685 1 ((𝐵𝑈 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  {ctp 4581  cfv 6483  (class class class)co 7341  0cc0 10976  1c1 10977   + caddc 10979  2c2 12133  3c3 12134  0cn0 12338  ..^cfzo 13487  chash 14149  Word cword 14321  ⟨“cs3 14654  Vtxcvtx 27654   WWalksN cwwlksn 28478   WWalksNOn cwwlksnon 28479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-fz 13345  df-fzo 13488  df-hash 14150  df-word 14322  df-concat 14378  df-s1 14403  df-s2 14660  df-s3 14661  df-wwlks 28482  df-wwlksn 28483  df-wwlksnon 28484
This theorem is referenced by:  frgr2wwlkeqm  28982
  Copyright terms: Public domain W3C validator