MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpspropd Structured version   Visualization version   GIF version

Theorem tpspropd 22854
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
tpspropd.2 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
tpspropd (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
2 tpspropd.1 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
32fveq2d 6832 . . 3 (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿)))
41, 3eleq12d 2827 . 2 (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))))
5 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2733 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
75, 6istps 22850 . 2 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
8 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
9 eqid 2733 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
108, 9istps 22850 . 2 (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))
114, 7, 103bitr4g 314 1 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  cfv 6486  Basecbs 17122  TopOpenctopn 17327  TopOnctopon 22826  TopSpctps 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-top 22810  df-topon 22827  df-topsp 22849
This theorem is referenced by:  tpsprop2d  22855  xmspropd  24389
  Copyright terms: Public domain W3C validator