![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpspropd | Structured version Visualization version GIF version |
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tpspropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
tpspropd.2 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
tpspropd | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpspropd.2 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
2 | tpspropd.1 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 2 | fveq2d 6847 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿))) |
4 | 1, 3 | eleq12d 2828 | . 2 ⊢ (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))) |
5 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2733 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
7 | 5, 6 | istps 22299 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
8 | eqid 2733 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | eqid 2733 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
10 | 8, 9 | istps 22299 | . 2 ⊢ (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))) |
11 | 4, 7, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ‘cfv 6497 Basecbs 17088 TopOpenctopn 17308 TopOnctopon 22275 TopSpctps 22297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-top 22259 df-topon 22276 df-topsp 22298 |
This theorem is referenced by: tpsprop2d 22304 xmspropd 23842 |
Copyright terms: Public domain | W3C validator |