MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpspropd Structured version   Visualization version   GIF version

Theorem tpspropd 22825
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpspropd.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
tpspropd.2 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
tpspropd (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))

Proof of Theorem tpspropd
StepHypRef Expression
1 tpspropd.2 . . 3 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
2 tpspropd.1 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
32fveq2d 6862 . . 3 (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿)))
41, 3eleq12d 2822 . 2 (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))))
5 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2729 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
75, 6istps 22821 . 2 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
8 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
9 eqid 2729 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
108, 9istps 22821 . 2 (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))
114, 7, 103bitr4g 314 1 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  TopOpenctopn 17384  TopOnctopon 22797  TopSpctps 22819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798  df-topsp 22820
This theorem is referenced by:  tpsprop2d  22826  xmspropd  24361
  Copyright terms: Public domain W3C validator