| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpspropd | Structured version Visualization version GIF version | ||
| Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tpspropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| tpspropd.2 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Ref | Expression |
|---|---|
| tpspropd | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpspropd.2 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
| 2 | tpspropd.1 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 3 | 2 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿))) |
| 4 | 1, 3 | eleq12d 2822 | . 2 ⊢ (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))) |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 7 | 5, 6 | istps 22821 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
| 8 | eqid 2729 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
| 10 | 8, 9 | istps 22821 | . 2 ⊢ (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))) |
| 11 | 4, 7, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 TopOnctopon 22797 TopSpctps 22819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 df-topsp 22820 |
| This theorem is referenced by: tpsprop2d 22826 xmspropd 24361 |
| Copyright terms: Public domain | W3C validator |