| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpspropd | Structured version Visualization version GIF version | ||
| Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tpspropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| tpspropd.2 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
| Ref | Expression |
|---|---|
| tpspropd | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpspropd.2 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
| 2 | tpspropd.1 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
| 3 | 2 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿))) |
| 4 | 1, 3 | eleq12d 2825 | . 2 ⊢ (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))) |
| 5 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 7 | 5, 6 | istps 22850 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
| 8 | eqid 2731 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 9 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
| 10 | 8, 9 | istps 22850 | . 2 ⊢ (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))) |
| 11 | 4, 7, 10 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 TopOpenctopn 17325 TopOnctopon 22826 TopSpctps 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22810 df-topon 22827 df-topsp 22849 |
| This theorem is referenced by: tpsprop2d 22855 xmspropd 24389 |
| Copyright terms: Public domain | W3C validator |