Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpspropd | Structured version Visualization version GIF version |
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tpspropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
tpspropd.2 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
tpspropd | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpspropd.2 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
2 | tpspropd.1 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿))) |
4 | 1, 3 | eleq12d 2833 | . 2 ⊢ (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))) |
5 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
7 | 5, 6 | istps 21991 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
8 | eqid 2738 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
10 | 8, 9 | istps 21991 | . 2 ⊢ (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))) |
11 | 4, 7, 10 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 TopOpenctopn 17049 TopOnctopon 21967 TopSpctps 21989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-topon 21968 df-topsp 21990 |
This theorem is referenced by: tpsprop2d 21996 xmspropd 23534 |
Copyright terms: Public domain | W3C validator |