MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpsprop2d Structured version   Visualization version   GIF version

Theorem tpsprop2d 22842
Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tpsprop2d.1 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
tpsprop2d.2 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
Assertion
Ref Expression
tpsprop2d (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))

Proof of Theorem tpsprop2d
StepHypRef Expression
1 tpsprop2d.1 . 2 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
2 tpsprop2d.2 . . 3 (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿))
31, 2topnpropd 17358 . 2 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
41, 3tpspropd 22841 1 (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6486  Basecbs 17138  TopSetcts 17185  TopSpctps 22835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-rest 17344  df-topn 17345  df-top 22797  df-topon 22814  df-topsp 22836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator