![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpsprop2d | Structured version Visualization version GIF version |
Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tpsprop2d.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
tpsprop2d.2 | ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) |
Ref | Expression |
---|---|
tpsprop2d | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpsprop2d.1 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
2 | tpsprop2d.2 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) | |
3 | 1, 2 | topnpropd 16544 | . 2 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
4 | 1, 3 | tpspropd 21235 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 ‘cfv 6230 Basecbs 16317 TopSetcts 16405 TopSpctps 21229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-ov 7024 df-oprab 7025 df-mpo 7026 df-1st 7550 df-2nd 7551 df-rest 16530 df-topn 16531 df-top 21191 df-topon 21208 df-topsp 21230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |