MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslem Structured version   Visualization version   GIF version

Theorem tuslem 24205
Description: Lemma for tusbas 24206, tusunif 24207, and tustopn 24209. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof shortened by AV, 28-Oct-2024.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslem (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslem
StepHypRef Expression
1 baseid 17231 . . . 4 Base = Slot (Base‘ndx)
2 tsetndxnbasendx 17370 . . . . 5 (TopSet‘ndx) ≠ (Base‘ndx)
32necomi 2986 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
41, 3setsnid 17227 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
5 ustbas2 24164 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
6 uniexg 7734 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
7 dmexg 7897 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
8 eqid 2735 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
9 basendxltunifndx 17412 . . . . . 6 (Base‘ndx) < (UnifSet‘ndx)
10 unifndxnn 17411 . . . . . 6 (UnifSet‘ndx) ∈ ℕ
118, 9, 102strbas 17249 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
126, 7, 113syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
135, 12eqtrd 2770 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
14 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
15 tusval 24204 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
1614, 15eqtrid 2782 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
1716fveq2d 6880 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
184, 13, 173eqtr4a 2796 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
19 unifid 17410 . . . 4 UnifSet = Slot (UnifSet‘ndx)
20 unifndxntsetndx 17414 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
2119, 20setsnid 17227 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
228, 9, 10, 192strop 17250 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2316fveq2d 6880 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
2421, 22, 233eqtr4a 2796 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
25 prex 5407 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
26 fvex 6889 . . . . 5 (unifTop‘𝑈) ∈ V
27 tsetid 17367 . . . . . 6 TopSet = Slot (TopSet‘ndx)
2827setsid 17226 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
2925, 26, 28mp2an 692 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
3016fveq2d 6880 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
3129, 30eqtr4id 2789 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
32 utopbas 24174 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
3331unieqd 4896 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
3432, 18, 333eqtr3rd 2779 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
3534oveq2d 7421 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
36 fvex 6889 . . . . 5 (TopSet‘𝐾) ∈ V
37 eqid 2735 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
3837restid 17447 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
3936, 38ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
40 eqid 2735 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
41 eqid 2735 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
4240, 41topnval 17448 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
4335, 39, 423eqtr3g 2793 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4431, 43eqtrd 2770 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
4518, 24, 443jca 1128 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  {cpr 4603  cop 4607   cuni 4883  dom cdm 5654  cfv 6531  (class class class)co 7405   sSet csts 17182  ndxcnx 17212  Basecbs 17228  TopSetcts 17277  UnifSetcunif 17281  t crest 17434  TopOpenctopn 17435  UnifOncust 24138  unifTopcutop 24169  toUnifSpctus 24194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-unif 17294  df-rest 17436  df-topn 17437  df-ust 24139  df-utop 24170  df-tus 24197
This theorem is referenced by:  tusbas  24206  tusunif  24207  tustopn  24209  tususp  24210
  Copyright terms: Public domain W3C validator