MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslem Structured version   Visualization version   GIF version

Theorem tuslem 24179
Description: Lemma for tusbas 24180, tusunif 24181, and tustopn 24183. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof shortened by AV, 28-Oct-2024.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslem (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslem
StepHypRef Expression
1 baseid 17120 . . . 4 Base = Slot (Base‘ndx)
2 tsetndxnbasendx 17257 . . . . 5 (TopSet‘ndx) ≠ (Base‘ndx)
32necomi 2982 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
41, 3setsnid 17116 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
5 ustbas2 24138 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
6 uniexg 7673 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
7 dmexg 7831 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
8 eqid 2731 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
9 basendxltunifndx 17299 . . . . . 6 (Base‘ndx) < (UnifSet‘ndx)
10 unifndxnn 17298 . . . . . 6 (UnifSet‘ndx) ∈ ℕ
118, 9, 102strbas 17136 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
126, 7, 113syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
135, 12eqtrd 2766 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
14 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
15 tusval 24178 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
1614, 15eqtrid 2778 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
1716fveq2d 6826 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
184, 13, 173eqtr4a 2792 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
19 unifid 17297 . . . 4 UnifSet = Slot (UnifSet‘ndx)
20 unifndxntsetndx 17301 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
2119, 20setsnid 17116 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
228, 9, 10, 192strop 17137 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2316fveq2d 6826 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
2421, 22, 233eqtr4a 2792 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
25 prex 5375 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
26 fvex 6835 . . . . 5 (unifTop‘𝑈) ∈ V
27 tsetid 17254 . . . . . 6 TopSet = Slot (TopSet‘ndx)
2827setsid 17115 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
2925, 26, 28mp2an 692 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
3016fveq2d 6826 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
3129, 30eqtr4id 2785 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
32 utopbas 24148 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
3331unieqd 4872 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
3432, 18, 333eqtr3rd 2775 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
3534oveq2d 7362 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
36 fvex 6835 . . . . 5 (TopSet‘𝐾) ∈ V
37 eqid 2731 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
3837restid 17334 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
3936, 38ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
40 eqid 2731 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
41 eqid 2731 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
4240, 41topnval 17335 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
4335, 39, 423eqtr3g 2789 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4431, 43eqtrd 2766 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
4518, 24, 443jca 1128 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4578  cop 4582   cuni 4859  dom cdm 5616  cfv 6481  (class class class)co 7346   sSet csts 17071  ndxcnx 17101  Basecbs 17117  TopSetcts 17164  UnifSetcunif 17168  t crest 17321  TopOpenctopn 17322  UnifOncust 24113  unifTopcutop 24143  toUnifSpctus 24168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-tset 17177  df-unif 17181  df-rest 17323  df-topn 17324  df-ust 24114  df-utop 24144  df-tus 24171
This theorem is referenced by:  tusbas  24180  tusunif  24181  tustopn  24183  tususp  24184
  Copyright terms: Public domain W3C validator