MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslem Structured version   Visualization version   GIF version

Theorem tuslem 22399
Description: Lemma for tusbas 22400, tusunif 22401, and tustopn 22403. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslem (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslem
StepHypRef Expression
1 baseid 16244 . . . 4 Base = Slot (Base‘ndx)
2 1re 10328 . . . . . 6 1 ∈ ℝ
3 1lt9 11526 . . . . . 6 1 < 9
42, 3ltneii 10440 . . . . 5 1 ≠ 9
5 basendx 16248 . . . . . 6 (Base‘ndx) = 1
6 tsetndx 16361 . . . . . 6 (TopSet‘ndx) = 9
75, 6neeq12i 3037 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
84, 7mpbir 223 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
91, 8setsnid 16240 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
10 ustbas2 22357 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
11 uniexg 7189 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
12 dmexg 7331 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
13 eqid 2799 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
14 df-unif 16290 . . . . . 6 UnifSet = Slot 13
15 1nn 11325 . . . . . . 7 1 ∈ ℕ
16 3nn0 11600 . . . . . . 7 3 ∈ ℕ0
17 1nn0 11598 . . . . . . 7 1 ∈ ℕ0
18 1lt10 11924 . . . . . . 7 1 < 10
1915, 16, 17, 18declti 11822 . . . . . 6 1 < 13
20 3nn 11392 . . . . . . 7 3 ∈ ℕ
2117, 20decnncl 11804 . . . . . 6 13 ∈ ℕ
2213, 14, 19, 212strbas 16305 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2311, 12, 223syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2410, 23eqtrd 2833 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
25 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
26 tusval 22398 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2725, 26syl5eq 2845 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2827fveq2d 6415 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
299, 24, 283eqtr4a 2859 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
30 unifid 16380 . . . 4 UnifSet = Slot (UnifSet‘ndx)
31 9re 11418 . . . . . 6 9 ∈ ℝ
32 9nn0 11606 . . . . . . 7 9 ∈ ℕ0
33 9lt10 11916 . . . . . . 7 9 < 10
3415, 16, 32, 33declti 11822 . . . . . 6 9 < 13
3531, 34gtneii 10439 . . . . 5 13 ≠ 9
36 unifndx 16379 . . . . . 6 (UnifSet‘ndx) = 13
3736, 6neeq12i 3037 . . . . 5 ((UnifSet‘ndx) ≠ (TopSet‘ndx) ↔ 13 ≠ 9)
3835, 37mpbir 223 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
3930, 38setsnid 16240 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4013, 14, 19, 212strop 16306 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
4127fveq2d 6415 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4239, 40, 413eqtr4a 2859 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
4327fveq2d 6415 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
44 prex 5100 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
45 fvex 6424 . . . . 5 (unifTop‘𝑈) ∈ V
46 tsetid 16362 . . . . . 6 TopSet = Slot (TopSet‘ndx)
4746setsid 16239 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4844, 45, 47mp2an 684 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4943, 48syl6reqr 2852 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
50 utopbas 22367 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
5149unieqd 4638 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
5250, 29, 513eqtr3rd 2842 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
5352oveq2d 6894 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
54 fvex 6424 . . . . 5 (TopSet‘𝐾) ∈ V
55 eqid 2799 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
5655restid 16409 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
5754, 56ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
58 eqid 2799 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2799 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
6058, 59topnval 16410 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
6153, 57, 603eqtr3g 2856 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
6249, 61eqtrd 2833 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
6329, 42, 623jca 1159 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  wne 2971  Vcvv 3385  {cpr 4370  cop 4374   cuni 4628  dom cdm 5312  cfv 6101  (class class class)co 6878  1c1 10225  3c3 11369  9c9 11375  cdc 11783  ndxcnx 16181   sSet csts 16182  Basecbs 16184  TopSetcts 16273  UnifSetcunif 16277  t crest 16396  TopOpenctopn 16397  UnifOncust 22331  unifTopcutop 22362  toUnifSpctus 22387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-tset 16286  df-unif 16290  df-rest 16398  df-topn 16399  df-ust 22332  df-utop 22363  df-tus 22390
This theorem is referenced by:  tusbas  22400  tusunif  22401  tustopn  22403  tususp  22404
  Copyright terms: Public domain W3C validator