MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressusp Structured version   Visualization version   GIF version

Theorem ressusp 24294
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Hypotheses
Ref Expression
ressusp.1 𝐵 = (Base‘𝑊)
ressusp.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
ressusp ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)

Proof of Theorem ressusp
StepHypRef Expression
1 ressuss 24292 . . . . 5 (𝐴𝐽 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
213ad2ant3 1135 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
3 simp1 1136 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ UnifSp)
4 ressusp.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
5 eqid 2740 . . . . . . . 8 (UnifSt‘𝑊) = (UnifSt‘𝑊)
6 ressusp.2 . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
74, 5, 6isusp 24291 . . . . . . 7 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
83, 7sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
98simpld 494 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘𝑊) ∈ (UnifOn‘𝐵))
10 simp2 1137 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ TopSp)
114, 6istps 22961 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 ∈ (TopOn‘𝐵))
13 simp3 1138 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐽)
14 toponss 22954 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐴𝐽) → 𝐴𝐵)
1512, 13, 14syl2anc 583 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐵)
16 trust 24259 . . . . 5 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴𝐵) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
179, 15, 16syl2anc 583 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
182, 17eqeltrd 2844 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘𝐴))
19 eqid 2740 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
2019, 4ressbas2 17296 . . . . 5 (𝐴𝐵𝐴 = (Base‘(𝑊s 𝐴)))
2115, 20syl 17 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 = (Base‘(𝑊s 𝐴)))
2221fveq2d 6924 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifOn‘𝐴) = (UnifOn‘(Base‘(𝑊s 𝐴))))
2318, 22eleqtrd 2846 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))))
248simprd 495 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
2513, 24eleqtrd 2846 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 ∈ (unifTop‘(UnifSt‘𝑊)))
26 restutopopn 24268 . . . 4 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴 ∈ (unifTop‘(UnifSt‘𝑊))) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
279, 25, 26syl2anc 583 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
2824oveq1d 7463 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴))
292fveq2d 6924 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (unifTop‘(UnifSt‘(𝑊s 𝐴))) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
3027, 28, 293eqtr4d 2790 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴))))
31 eqid 2740 . . 3 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
32 eqid 2740 . . 3 (UnifSt‘(𝑊s 𝐴)) = (UnifSt‘(𝑊s 𝐴))
3319, 6resstopn 23215 . . 3 (𝐽t 𝐴) = (TopOpen‘(𝑊s 𝐴))
3431, 32, 33isusp 24291 . 2 ((𝑊s 𝐴) ∈ UnifSp ↔ ((UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))) ∧ (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴)))))
3523, 30, 34sylanbrc 582 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976   × cxp 5698  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  t crest 17480  TopOpenctopn 17481  TopOnctopon 22937  TopSpctps 22959  UnifOncust 24229  unifTopcutop 24260  UnifStcuss 24283  UnifSpcusp 24284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-tset 17330  df-unif 17334  df-rest 17482  df-topn 17483  df-top 22921  df-topon 22938  df-topsp 22960  df-ust 24230  df-utop 24261  df-uss 24286  df-usp 24287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator