MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressusp Structured version   Visualization version   GIF version

Theorem ressusp 24158
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Hypotheses
Ref Expression
ressusp.1 𝐵 = (Base‘𝑊)
ressusp.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
ressusp ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)

Proof of Theorem ressusp
StepHypRef Expression
1 ressuss 24156 . . . . 5 (𝐴𝐽 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
213ad2ant3 1135 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
3 simp1 1136 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ UnifSp)
4 ressusp.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
5 eqid 2730 . . . . . . . 8 (UnifSt‘𝑊) = (UnifSt‘𝑊)
6 ressusp.2 . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
74, 5, 6isusp 24155 . . . . . . 7 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
83, 7sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
98simpld 494 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘𝑊) ∈ (UnifOn‘𝐵))
10 simp2 1137 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ TopSp)
114, 6istps 22827 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 ∈ (TopOn‘𝐵))
13 simp3 1138 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐽)
14 toponss 22820 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐴𝐽) → 𝐴𝐵)
1512, 13, 14syl2anc 584 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐵)
16 trust 24123 . . . . 5 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴𝐵) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
179, 15, 16syl2anc 584 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
182, 17eqeltrd 2829 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘𝐴))
19 eqid 2730 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
2019, 4ressbas2 17214 . . . . 5 (𝐴𝐵𝐴 = (Base‘(𝑊s 𝐴)))
2115, 20syl 17 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 = (Base‘(𝑊s 𝐴)))
2221fveq2d 6864 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifOn‘𝐴) = (UnifOn‘(Base‘(𝑊s 𝐴))))
2318, 22eleqtrd 2831 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))))
248simprd 495 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
2513, 24eleqtrd 2831 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 ∈ (unifTop‘(UnifSt‘𝑊)))
26 restutopopn 24132 . . . 4 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴 ∈ (unifTop‘(UnifSt‘𝑊))) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
279, 25, 26syl2anc 584 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
2824oveq1d 7404 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴))
292fveq2d 6864 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (unifTop‘(UnifSt‘(𝑊s 𝐴))) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
3027, 28, 293eqtr4d 2775 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴))))
31 eqid 2730 . . 3 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
32 eqid 2730 . . 3 (UnifSt‘(𝑊s 𝐴)) = (UnifSt‘(𝑊s 𝐴))
3319, 6resstopn 23079 . . 3 (𝐽t 𝐴) = (TopOpen‘(𝑊s 𝐴))
3431, 32, 33isusp 24155 . 2 ((𝑊s 𝐴) ∈ UnifSp ↔ ((UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))) ∧ (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴)))))
3523, 30, 34sylanbrc 583 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3916   × cxp 5638  cfv 6513  (class class class)co 7389  Basecbs 17185  s cress 17206  t crest 17389  TopOpenctopn 17390  TopOnctopon 22803  TopSpctps 22825  UnifOncust 24093  unifTopcutop 24124  UnifStcuss 24147  UnifSpcusp 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-tset 17245  df-unif 17249  df-rest 17391  df-topn 17392  df-top 22787  df-topon 22804  df-topsp 22826  df-ust 24094  df-utop 24125  df-uss 24150  df-usp 24151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator