MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressusp Structured version   Visualization version   GIF version

Theorem ressusp 24152
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Hypotheses
Ref Expression
ressusp.1 𝐵 = (Base‘𝑊)
ressusp.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
ressusp ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)

Proof of Theorem ressusp
StepHypRef Expression
1 ressuss 24150 . . . . 5 (𝐴𝐽 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
213ad2ant3 1135 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
3 simp1 1136 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ UnifSp)
4 ressusp.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
5 eqid 2729 . . . . . . . 8 (UnifSt‘𝑊) = (UnifSt‘𝑊)
6 ressusp.2 . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
74, 5, 6isusp 24149 . . . . . . 7 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
83, 7sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
98simpld 494 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘𝑊) ∈ (UnifOn‘𝐵))
10 simp2 1137 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ TopSp)
114, 6istps 22821 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 218 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 ∈ (TopOn‘𝐵))
13 simp3 1138 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐽)
14 toponss 22814 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐴𝐽) → 𝐴𝐵)
1512, 13, 14syl2anc 584 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐵)
16 trust 24117 . . . . 5 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴𝐵) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
179, 15, 16syl2anc 584 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
182, 17eqeltrd 2828 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘𝐴))
19 eqid 2729 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
2019, 4ressbas2 17208 . . . . 5 (𝐴𝐵𝐴 = (Base‘(𝑊s 𝐴)))
2115, 20syl 17 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 = (Base‘(𝑊s 𝐴)))
2221fveq2d 6862 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifOn‘𝐴) = (UnifOn‘(Base‘(𝑊s 𝐴))))
2318, 22eleqtrd 2830 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))))
248simprd 495 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
2513, 24eleqtrd 2830 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 ∈ (unifTop‘(UnifSt‘𝑊)))
26 restutopopn 24126 . . . 4 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴 ∈ (unifTop‘(UnifSt‘𝑊))) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
279, 25, 26syl2anc 584 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
2824oveq1d 7402 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴))
292fveq2d 6862 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (unifTop‘(UnifSt‘(𝑊s 𝐴))) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
3027, 28, 293eqtr4d 2774 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴))))
31 eqid 2729 . . 3 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
32 eqid 2729 . . 3 (UnifSt‘(𝑊s 𝐴)) = (UnifSt‘(𝑊s 𝐴))
3319, 6resstopn 23073 . . 3 (𝐽t 𝐴) = (TopOpen‘(𝑊s 𝐴))
3431, 32, 33isusp 24149 . 2 ((𝑊s 𝐴) ∈ UnifSp ↔ ((UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))) ∧ (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴)))))
3523, 30, 34sylanbrc 583 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  t crest 17383  TopOpenctopn 17384  TopOnctopon 22797  TopSpctps 22819  UnifOncust 24087  unifTopcutop 24118  UnifStcuss 24141  UnifSpcusp 24142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-tset 17239  df-unif 17243  df-rest 17385  df-topn 17386  df-top 22781  df-topon 22798  df-topsp 22820  df-ust 24088  df-utop 24119  df-uss 24144  df-usp 24145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator