Step | Hyp | Ref
| Expression |
1 | | ressuss 23988 |
. . . . 5
β’ (π΄ β π½ β (UnifStβ(π βΎs π΄)) = ((UnifStβπ) βΎt (π΄ Γ π΄))) |
2 | 1 | 3ad2ant3 1134 |
. . . 4
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (UnifStβ(π βΎs π΄)) = ((UnifStβπ) βΎt (π΄ Γ π΄))) |
3 | | simp1 1135 |
. . . . . . 7
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π β UnifSp) |
4 | | ressusp.1 |
. . . . . . . 8
β’ π΅ = (Baseβπ) |
5 | | eqid 2731 |
. . . . . . . 8
β’
(UnifStβπ) =
(UnifStβπ) |
6 | | ressusp.2 |
. . . . . . . 8
β’ π½ = (TopOpenβπ) |
7 | 4, 5, 6 | isusp 23987 |
. . . . . . 7
β’ (π β UnifSp β
((UnifStβπ) β
(UnifOnβπ΅) β§
π½ =
(unifTopβ(UnifStβπ)))) |
8 | 3, 7 | sylib 217 |
. . . . . 6
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β ((UnifStβπ) β (UnifOnβπ΅) β§ π½ = (unifTopβ(UnifStβπ)))) |
9 | 8 | simpld 494 |
. . . . 5
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (UnifStβπ) β (UnifOnβπ΅)) |
10 | | simp2 1136 |
. . . . . . 7
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π β TopSp) |
11 | 4, 6 | istps 22657 |
. . . . . . 7
β’ (π β TopSp β π½ β (TopOnβπ΅)) |
12 | 10, 11 | sylib 217 |
. . . . . 6
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π½ β (TopOnβπ΅)) |
13 | | simp3 1137 |
. . . . . 6
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π΄ β π½) |
14 | | toponss 22650 |
. . . . . 6
β’ ((π½ β (TopOnβπ΅) β§ π΄ β π½) β π΄ β π΅) |
15 | 12, 13, 14 | syl2anc 583 |
. . . . 5
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π΄ β π΅) |
16 | | trust 23955 |
. . . . 5
β’
(((UnifStβπ)
β (UnifOnβπ΅)
β§ π΄ β π΅) β ((UnifStβπ) βΎt (π΄ Γ π΄)) β (UnifOnβπ΄)) |
17 | 9, 15, 16 | syl2anc 583 |
. . . 4
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β ((UnifStβπ) βΎt (π΄ Γ π΄)) β (UnifOnβπ΄)) |
18 | 2, 17 | eqeltrd 2832 |
. . 3
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (UnifStβ(π βΎs π΄)) β (UnifOnβπ΄)) |
19 | | eqid 2731 |
. . . . . 6
β’ (π βΎs π΄) = (π βΎs π΄) |
20 | 19, 4 | ressbas2 17187 |
. . . . 5
β’ (π΄ β π΅ β π΄ = (Baseβ(π βΎs π΄))) |
21 | 15, 20 | syl 17 |
. . . 4
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π΄ = (Baseβ(π βΎs π΄))) |
22 | 21 | fveq2d 6895 |
. . 3
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (UnifOnβπ΄) = (UnifOnβ(Baseβ(π βΎs π΄)))) |
23 | 18, 22 | eleqtrd 2834 |
. 2
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (UnifStβ(π βΎs π΄)) β (UnifOnβ(Baseβ(π βΎs π΄)))) |
24 | 8 | simprd 495 |
. . . . 5
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π½ = (unifTopβ(UnifStβπ))) |
25 | 13, 24 | eleqtrd 2834 |
. . . 4
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β π΄ β (unifTopβ(UnifStβπ))) |
26 | | restutopopn 23964 |
. . . 4
β’
(((UnifStβπ)
β (UnifOnβπ΅)
β§ π΄ β
(unifTopβ(UnifStβπ))) β
((unifTopβ(UnifStβπ)) βΎt π΄) = (unifTopβ((UnifStβπ) βΎt (π΄ Γ π΄)))) |
27 | 9, 25, 26 | syl2anc 583 |
. . 3
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β ((unifTopβ(UnifStβπ)) βΎt π΄) =
(unifTopβ((UnifStβπ) βΎt (π΄ Γ π΄)))) |
28 | 24 | oveq1d 7427 |
. . 3
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (π½ βΎt π΄) = ((unifTopβ(UnifStβπ)) βΎt π΄)) |
29 | 2 | fveq2d 6895 |
. . 3
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (unifTopβ(UnifStβ(π βΎs π΄))) =
(unifTopβ((UnifStβπ) βΎt (π΄ Γ π΄)))) |
30 | 27, 28, 29 | 3eqtr4d 2781 |
. 2
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (π½ βΎt π΄) = (unifTopβ(UnifStβ(π βΎs π΄)))) |
31 | | eqid 2731 |
. . 3
β’
(Baseβ(π
βΎs π΄)) =
(Baseβ(π
βΎs π΄)) |
32 | | eqid 2731 |
. . 3
β’
(UnifStβ(π
βΎs π΄)) =
(UnifStβ(π
βΎs π΄)) |
33 | 19, 6 | resstopn 22911 |
. . 3
β’ (π½ βΎt π΄) = (TopOpenβ(π βΎs π΄)) |
34 | 31, 32, 33 | isusp 23987 |
. 2
β’ ((π βΎs π΄) β UnifSp β
((UnifStβ(π
βΎs π΄))
β (UnifOnβ(Baseβ(π βΎs π΄))) β§ (π½ βΎt π΄) = (unifTopβ(UnifStβ(π βΎs π΄))))) |
35 | 23, 30, 34 | sylanbrc 582 |
1
β’ ((π β UnifSp β§ π β TopSp β§ π΄ β π½) β (π βΎs π΄) β UnifSp) |