Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 27680) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
umgrres | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 27484 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 27446 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | funres 6468 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → Fun (𝐸 ↾ 𝐹)) |
6 | 5 | funfnd 6457 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
10 | 8, 2, 9 | umgrreslem 27682 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
11 | df-f 6430 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
12 | 7, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
14 | opex 5377 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
15 | 13, 14 | eqeltri 2835 | . . 3 ⊢ 𝑆 ∈ V |
16 | 8, 2, 9, 13 | uhgrspan1lem2 27678 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
17 | 16 | eqcomi 2747 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
18 | 8, 2, 9, 13 | uhgrspan1lem3 27679 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
19 | 18 | eqcomi 2747 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
20 | 17, 19 | isumgrs 27476 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
22 | 12, 21 | mpbird 256 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 Vcvv 3429 ∖ cdif 3883 ⊆ wss 3886 𝒫 cpw 4533 {csn 4561 〈cop 4567 dom cdm 5584 ran crn 5585 ↾ cres 5586 Fun wfun 6420 Fn wfn 6421 ⟶wf 6422 ‘cfv 6426 2c2 12038 ♯chash 14054 Vtxcvtx 27376 iEdgciedg 27377 UHGraphcuhgr 27436 UMGraphcumgr 27461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-hash 14055 df-vtx 27378 df-iedg 27379 df-uhgr 27438 df-upgr 27462 df-umgr 27463 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |