| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrres | Structured version Visualization version GIF version | ||
| Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 29282) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| umgrres | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgruhgr 29083 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
| 2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 29045 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 4 | funres 6578 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
| 5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → Fun (𝐸 ↾ 𝐹)) |
| 6 | 5 | funfnd 6567 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 10 | 8, 2, 9 | umgrreslem 29284 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 11 | df-f 6535 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
| 12 | 7, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
| 14 | opex 5439 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
| 15 | 13, 14 | eqeltri 2830 | . . 3 ⊢ 𝑆 ∈ V |
| 16 | 8, 2, 9, 13 | uhgrspan1lem2 29280 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 17 | 16 | eqcomi 2744 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 18 | 8, 2, 9, 13 | uhgrspan1lem3 29281 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
| 19 | 18 | eqcomi 2744 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
| 20 | 17, 19 | isumgrs 29075 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 22 | 12, 21 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 {crab 3415 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 {csn 4601 〈cop 4607 dom cdm 5654 ran crn 5655 ↾ cres 5656 Fun wfun 6525 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 2c2 12295 ♯chash 14348 Vtxcvtx 28975 iEdgciedg 28976 UHGraphcuhgr 29035 UMGraphcumgr 29060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-vtx 28977 df-iedg 28978 df-uhgr 29037 df-upgr 29061 df-umgr 29062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |