| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrres | Structured version Visualization version GIF version | ||
| Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 29279) is a multigraph. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| umgrres | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgruhgr 29080 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
| 2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 29042 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 4 | funres 6523 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
| 5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → Fun (𝐸 ↾ 𝐹)) |
| 6 | 5 | funfnd 6512 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 10 | 8, 2, 9 | umgrreslem 29281 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 11 | df-f 6485 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) | |
| 12 | 7, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
| 14 | opex 5404 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
| 15 | 13, 14 | eqeltri 2827 | . . 3 ⊢ 𝑆 ∈ V |
| 16 | 8, 2, 9, 13 | uhgrspan1lem2 29277 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 17 | 16 | eqcomi 2740 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 18 | 8, 2, 9, 13 | uhgrspan1lem3 29278 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
| 19 | 18 | eqcomi 2740 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
| 20 | 17, 19 | isumgrs 29072 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UMGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 22 | 12, 21 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 𝒫 cpw 4550 {csn 4576 〈cop 4582 dom cdm 5616 ran crn 5617 ↾ cres 5618 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 2c2 12177 ♯chash 14234 Vtxcvtx 28972 iEdgciedg 28973 UHGraphcuhgr 29032 UMGraphcumgr 29057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-hash 14235 df-vtx 28974 df-iedg 28975 df-uhgr 29034 df-upgr 29058 df-umgr 29059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |