![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 26537) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgruhgr 26337 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 26301 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | funres 6143 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (𝐸 ↾ 𝐹)) |
6 | 5 | funfnd 6132 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
7 | 6 | adantr 473 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
10 | 8, 2, 9 | upgrreslem 26538 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
11 | df-f 6105 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) | |
12 | 7, 10, 11 | sylanbrc 579 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
14 | opex 5123 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
15 | 13, 14 | eqeltri 2874 | . . 3 ⊢ 𝑆 ∈ V |
16 | 8, 2, 9, 13 | uhgrspan1lem2 26535 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
17 | 16 | eqcomi 2808 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
18 | 8, 2, 9, 13 | uhgrspan1lem3 26536 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
19 | 18 | eqcomi 2808 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
20 | 17, 19 | isupgr 26319 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
22 | 12, 21 | mpbird 249 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∉ wnel 3074 {crab 3093 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 ∅c0 4115 𝒫 cpw 4349 {csn 4368 〈cop 4374 class class class wbr 4843 dom cdm 5312 ran crn 5313 ↾ cres 5314 Fun wfun 6095 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 ≤ cle 10364 2c2 11368 ♯chash 13370 Vtxcvtx 26231 iEdgciedg 26232 UHGraphcuhgr 26291 UPGraphcupgr 26315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-1st 7401 df-2nd 7402 df-vtx 26233 df-iedg 26234 df-uhgr 26293 df-upgr 26317 |
This theorem is referenced by: finsumvtxdg2size 26800 |
Copyright terms: Public domain | W3C validator |