![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 29063) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)⟩ |
Ref | Expression |
---|---|
upgrres | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgruhgr 28865 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 28829 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | funres 6583 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (𝐸 ↾ 𝐹)) |
6 | 5 | funfnd 6572 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
10 | 8, 2, 9 | upgrreslem 29064 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
11 | df-f 6540 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) | |
12 | 7, 10, 11 | sylanbrc 582 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
13 | upgrres.s | . . . 4 ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)⟩ | |
14 | opex 5457 | . . . 4 ⊢ ⟨(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)⟩ ∈ V | |
15 | 13, 14 | eqeltri 2823 | . . 3 ⊢ 𝑆 ∈ V |
16 | 8, 2, 9, 13 | uhgrspan1lem2 29061 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
17 | 16 | eqcomi 2735 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
18 | 8, 2, 9, 13 | uhgrspan1lem3 29062 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
19 | 18 | eqcomi 2735 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
20 | 17, 19 | isupgr 28847 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
22 | 12, 21 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∉ wnel 3040 {crab 3426 Vcvv 3468 ∖ cdif 3940 ⊆ wss 3943 ∅c0 4317 𝒫 cpw 4597 {csn 4623 ⟨cop 4629 class class class wbr 5141 dom cdm 5669 ran crn 5670 ↾ cres 5671 Fun wfun 6530 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 ≤ cle 11250 2c2 12268 ♯chash 14292 Vtxcvtx 28759 iEdgciedg 28760 UHGraphcuhgr 28819 UPGraphcupgr 28843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1st 7971 df-2nd 7972 df-vtx 28761 df-iedg 28762 df-uhgr 28821 df-upgr 28845 |
This theorem is referenced by: finsumvtxdg2size 29311 |
Copyright terms: Public domain | W3C validator |