MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres Structured version   Visualization version   GIF version

Theorem upgrres 29066
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 29063) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
upgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
Assertion
Ref Expression
upgrres ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrres
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upgruhgr 28865 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 upgrres.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
32uhgrfun 28829 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4 funres 6583 . . . . . 6 (Fun 𝐸 → Fun (𝐸𝐹))
51, 3, 43syl 18 . . . . 5 (𝐺 ∈ UPGraph → Fun (𝐸𝐹))
65funfnd 6572 . . . 4 (𝐺 ∈ UPGraph → (𝐸𝐹) Fn dom (𝐸𝐹))
76adantr 480 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) Fn dom (𝐸𝐹))
8 upgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
9 upgrres.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
108, 2, 9upgrreslem 29064 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
11 df-f 6540 . . 3 ((𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸𝐹) Fn dom (𝐸𝐹) ∧ ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
127, 10, 11sylanbrc 582 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
13 upgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
14 opex 5457 . . . 4 ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩ ∈ V
1513, 14eqeltri 2823 . . 3 𝑆 ∈ V
168, 2, 9, 13uhgrspan1lem2 29061 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1716eqcomi 2735 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
188, 2, 9, 13uhgrspan1lem3 29062 . . . . 5 (iEdg‘𝑆) = (𝐸𝐹)
1918eqcomi 2735 . . . 4 (𝐸𝐹) = (iEdg‘𝑆)
2017, 19isupgr 28847 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2115, 20mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2212, 21mpbird 257 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wnel 3040  {crab 3426  Vcvv 3468  cdif 3940  wss 3943  c0 4317  𝒫 cpw 4597  {csn 4623  cop 4629   class class class wbr 5141  dom cdm 5669  ran crn 5670  cres 5671  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  cle 11250  2c2 12268  chash 14292  Vtxcvtx 28759  iEdgciedg 28760  UHGraphcuhgr 28819  UPGraphcupgr 28843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1st 7971  df-2nd 7972  df-vtx 28761  df-iedg 28762  df-uhgr 28821  df-upgr 28845
This theorem is referenced by:  finsumvtxdg2size  29311
  Copyright terms: Public domain W3C validator