![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrres | Structured version Visualization version GIF version |
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 29338) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
upgrres | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgruhgr 29137 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 29101 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | funres 6620 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (𝐸 ↾ 𝐹)) |
6 | 5 | funfnd 6609 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
10 | 8, 2, 9 | upgrreslem 29339 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
11 | df-f 6577 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) | |
12 | 7, 10, 11 | sylanbrc 582 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
14 | opex 5484 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
15 | 13, 14 | eqeltri 2840 | . . 3 ⊢ 𝑆 ∈ V |
16 | 8, 2, 9, 13 | uhgrspan1lem2 29336 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
17 | 16 | eqcomi 2749 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
18 | 8, 2, 9, 13 | uhgrspan1lem3 29337 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
19 | 18 | eqcomi 2749 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
20 | 17, 19 | isupgr 29119 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
22 | 12, 21 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 〈cop 4654 class class class wbr 5166 dom cdm 5700 ran crn 5701 ↾ cres 5702 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 UHGraphcuhgr 29091 UPGraphcupgr 29115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1st 8030 df-2nd 8031 df-vtx 29033 df-iedg 29034 df-uhgr 29093 df-upgr 29117 |
This theorem is referenced by: finsumvtxdg2size 29586 |
Copyright terms: Public domain | W3C validator |