| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgrres | Structured version Visualization version GIF version | ||
| Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 29206) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| upgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrres.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| upgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| upgrres | ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgruhgr 29005 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 2 | upgrres.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 28969 | . . . . . 6 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 4 | funres 6542 | . . . . . 6 ⊢ (Fun 𝐸 → Fun (𝐸 ↾ 𝐹)) | |
| 5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → Fun (𝐸 ↾ 𝐹)) |
| 6 | 5 | funfnd 6531 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹)) |
| 8 | upgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | upgrres.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 10 | 8, 2, 9 | upgrreslem 29207 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
| 11 | df-f 6503 | . . 3 ⊢ ((𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸 ↾ 𝐹) Fn dom (𝐸 ↾ 𝐹) ∧ ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) | |
| 12 | 7, 10, 11 | sylanbrc 583 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
| 13 | upgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 | |
| 14 | opex 5419 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), (𝐸 ↾ 𝐹)〉 ∈ V | |
| 15 | 13, 14 | eqeltri 2824 | . . 3 ⊢ 𝑆 ∈ V |
| 16 | 8, 2, 9, 13 | uhgrspan1lem2 29204 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 17 | 16 | eqcomi 2738 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 18 | 8, 2, 9, 13 | uhgrspan1lem3 29205 | . . . . 5 ⊢ (iEdg‘𝑆) = (𝐸 ↾ 𝐹) |
| 19 | 18 | eqcomi 2738 | . . . 4 ⊢ (𝐸 ↾ 𝐹) = (iEdg‘𝑆) |
| 20 | 17, 19 | isupgr 28987 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| 21 | 15, 20 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸 ↾ 𝐹):dom (𝐸 ↾ 𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| 22 | 12, 21 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3402 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 〈cop 4591 class class class wbr 5102 dom cdm 5631 ran crn 5632 ↾ cres 5633 Fun wfun 6493 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 ≤ cle 11185 2c2 12217 ♯chash 14271 Vtxcvtx 28899 iEdgciedg 28900 UHGraphcuhgr 28959 UPGraphcupgr 28983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1st 7947 df-2nd 7948 df-vtx 28901 df-iedg 28902 df-uhgr 28961 df-upgr 28985 |
| This theorem is referenced by: finsumvtxdg2size 29454 |
| Copyright terms: Public domain | W3C validator |