MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres Structured version   Visualization version   GIF version

Theorem upgrres 27963
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 27960) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
upgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
Assertion
Ref Expression
upgrres ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁
Allowed substitution hints:   𝑆(𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrres
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 upgruhgr 27762 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 upgrres.e . . . . . . 7 𝐸 = (iEdg‘𝐺)
32uhgrfun 27726 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4 funres 6527 . . . . . 6 (Fun 𝐸 → Fun (𝐸𝐹))
51, 3, 43syl 18 . . . . 5 (𝐺 ∈ UPGraph → Fun (𝐸𝐹))
65funfnd 6516 . . . 4 (𝐺 ∈ UPGraph → (𝐸𝐹) Fn dom (𝐸𝐹))
76adantr 481 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) Fn dom (𝐸𝐹))
8 upgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
9 upgrres.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
108, 2, 9upgrreslem 27961 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
11 df-f 6484 . . 3 ((𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸𝐹) Fn dom (𝐸𝐹) ∧ ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
127, 10, 11sylanbrc 583 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
13 upgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩
14 opex 5410 . . . 4 ⟨(𝑉 ∖ {𝑁}), (𝐸𝐹)⟩ ∈ V
1513, 14eqeltri 2833 . . 3 𝑆 ∈ V
168, 2, 9, 13uhgrspan1lem2 27958 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1716eqcomi 2745 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
188, 2, 9, 13uhgrspan1lem3 27959 . . . . 5 (iEdg‘𝑆) = (𝐸𝐹)
1918eqcomi 2745 . . . 4 (𝐸𝐹) = (iEdg‘𝑆)
2017, 19isupgr 27744 . . 3 (𝑆 ∈ V → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2115, 20mp1i 13 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑆 ∈ UPGraph ↔ (𝐸𝐹):dom (𝐸𝐹)⟶{𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
2212, 21mpbird 256 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wnel 3046  {crab 3403  Vcvv 3441  cdif 3895  wss 3898  c0 4270  𝒫 cpw 4548  {csn 4574  cop 4580   class class class wbr 5093  dom cdm 5621  ran crn 5622  cres 5623  Fun wfun 6474   Fn wfn 6475  wf 6476  cfv 6480  cle 11112  2c2 12130  chash 14146  Vtxcvtx 27656  iEdgciedg 27657  UHGraphcuhgr 27716  UPGraphcupgr 27740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-1st 7900  df-2nd 7901  df-vtx 27658  df-iedg 27659  df-uhgr 27718  df-upgr 27742
This theorem is referenced by:  finsumvtxdg2size  28207
  Copyright terms: Public domain W3C validator