MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconnsubb Structured version   Visualization version   GIF version

Theorem nconnsubb 21555
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconnsubb.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
nconnsubb.3 (𝜑𝐴𝑋)
nconnsubb.4 (𝜑𝑈𝐽)
nconnsubb.5 (𝜑𝑉𝐽)
nconnsubb.6 (𝜑 → (𝑈𝐴) ≠ ∅)
nconnsubb.7 (𝜑 → (𝑉𝐴) ≠ ∅)
nconnsubb.8 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
nconnsubb.9 (𝜑𝐴 ⊆ (𝑈𝑉))
Assertion
Ref Expression
nconnsubb (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)

Proof of Theorem nconnsubb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconnsubb.9 . 2 (𝜑𝐴 ⊆ (𝑈𝑉))
2 nconnsubb.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 nconnsubb.3 . . . 4 (𝜑𝐴𝑋)
4 connsuba 21552 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
52, 3, 4syl2anc 580 . . 3 (𝜑 → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
6 nconnsubb.6 . . . . 5 (𝜑 → (𝑈𝐴) ≠ ∅)
7 nconnsubb.7 . . . . 5 (𝜑 → (𝑉𝐴) ≠ ∅)
8 nconnsubb.8 . . . . 5 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
96, 7, 83jca 1159 . . . 4 (𝜑 → ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅))
10 nconnsubb.4 . . . . 5 (𝜑𝑈𝐽)
11 nconnsubb.5 . . . . 5 (𝜑𝑉𝐽)
12 ineq1 4005 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐴) = (𝑈𝐴))
1312neeq1d 3030 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐴) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
14 ineq1 4005 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1514ineq1d 4011 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
1615eqeq1d 2801 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑦) ∩ 𝐴) = ∅))
1713, 163anbi13d 1563 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅)))
18 uneq1 3958 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1918ineq1d 4011 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
2019neeq1d 3030 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴))
2117, 20imbi12d 336 . . . . . 6 (𝑥 = 𝑈 → ((((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)))
22 ineq1 4005 . . . . . . . . 9 (𝑦 = 𝑉 → (𝑦𝐴) = (𝑉𝐴))
2322neeq1d 3030 . . . . . . . 8 (𝑦 = 𝑉 → ((𝑦𝐴) ≠ ∅ ↔ (𝑉𝐴) ≠ ∅))
24 ineq2 4006 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
2524ineq1d 4011 . . . . . . . . 9 (𝑦 = 𝑉 → ((𝑈𝑦) ∩ 𝐴) = ((𝑈𝑉) ∩ 𝐴))
2625eqeq1d 2801 . . . . . . . 8 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑉) ∩ 𝐴) = ∅))
2723, 263anbi23d 1564 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅)))
28 sseqin2 4015 . . . . . . . . 9 (𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) = 𝐴)
2928necon3bbii 3018 . . . . . . . 8 𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)
30 uneq2 3959 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
3130sseq2d 3829 . . . . . . . . 9 (𝑦 = 𝑉 → (𝐴 ⊆ (𝑈𝑦) ↔ 𝐴 ⊆ (𝑈𝑉)))
3231notbid 310 . . . . . . . 8 (𝑦 = 𝑉 → (¬ 𝐴 ⊆ (𝑈𝑦) ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3329, 32syl5bbr 277 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3427, 33imbi12d 336 . . . . . 6 (𝑦 = 𝑉 → ((((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3521, 34rspc2v 3510 . . . . 5 ((𝑈𝐽𝑉𝐽) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3610, 11, 35syl2anc 580 . . . 4 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
379, 36mpid 44 . . 3 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → ¬ 𝐴 ⊆ (𝑈𝑉)))
385, 37sylbid 232 . 2 (𝜑 → ((𝐽t 𝐴) ∈ Conn → ¬ 𝐴 ⊆ (𝑈𝑉)))
391, 38mt2d 134 1 (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  cun 3767  cin 3768  wss 3769  c0 4115  cfv 6101  (class class class)co 6878  t crest 16396  TopOnctopon 21043  Conncconn 21543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-oadd 7803  df-er 7982  df-en 8196  df-fin 8199  df-fi 8559  df-rest 16398  df-topgen 16419  df-top 21027  df-topon 21044  df-bases 21079  df-cld 21152  df-conn 21544
This theorem is referenced by:  iunconnlem  21559  clsconn  21562  reconnlem1  22957  ordtconnlem1  30486
  Copyright terms: Public domain W3C validator