MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconnsubb Structured version   Visualization version   GIF version

Theorem nconnsubb 22026
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconnsubb.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
nconnsubb.3 (𝜑𝐴𝑋)
nconnsubb.4 (𝜑𝑈𝐽)
nconnsubb.5 (𝜑𝑉𝐽)
nconnsubb.6 (𝜑 → (𝑈𝐴) ≠ ∅)
nconnsubb.7 (𝜑 → (𝑉𝐴) ≠ ∅)
nconnsubb.8 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
nconnsubb.9 (𝜑𝐴 ⊆ (𝑈𝑉))
Assertion
Ref Expression
nconnsubb (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)

Proof of Theorem nconnsubb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconnsubb.9 . 2 (𝜑𝐴 ⊆ (𝑈𝑉))
2 nconnsubb.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 nconnsubb.3 . . . 4 (𝜑𝐴𝑋)
4 connsuba 22023 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
52, 3, 4syl2anc 587 . . 3 (𝜑 → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
6 nconnsubb.6 . . . . 5 (𝜑 → (𝑈𝐴) ≠ ∅)
7 nconnsubb.7 . . . . 5 (𝜑 → (𝑉𝐴) ≠ ∅)
8 nconnsubb.8 . . . . 5 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
96, 7, 83jca 1125 . . . 4 (𝜑 → ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅))
10 nconnsubb.4 . . . . 5 (𝜑𝑈𝐽)
11 nconnsubb.5 . . . . 5 (𝜑𝑉𝐽)
12 ineq1 4166 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐴) = (𝑈𝐴))
1312neeq1d 3073 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐴) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
14 ineq1 4166 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1514ineq1d 4173 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
1615eqeq1d 2826 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑦) ∩ 𝐴) = ∅))
1713, 163anbi13d 1435 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅)))
18 uneq1 4118 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1918ineq1d 4173 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
2019neeq1d 3073 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴))
2117, 20imbi12d 348 . . . . . 6 (𝑥 = 𝑈 → ((((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)))
22 ineq1 4166 . . . . . . . . 9 (𝑦 = 𝑉 → (𝑦𝐴) = (𝑉𝐴))
2322neeq1d 3073 . . . . . . . 8 (𝑦 = 𝑉 → ((𝑦𝐴) ≠ ∅ ↔ (𝑉𝐴) ≠ ∅))
24 ineq2 4168 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
2524ineq1d 4173 . . . . . . . . 9 (𝑦 = 𝑉 → ((𝑈𝑦) ∩ 𝐴) = ((𝑈𝑉) ∩ 𝐴))
2625eqeq1d 2826 . . . . . . . 8 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑉) ∩ 𝐴) = ∅))
2723, 263anbi23d 1436 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅)))
28 sseqin2 4177 . . . . . . . . 9 (𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) = 𝐴)
2928necon3bbii 3061 . . . . . . . 8 𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)
30 uneq2 4119 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
3130sseq2d 3985 . . . . . . . . 9 (𝑦 = 𝑉 → (𝐴 ⊆ (𝑈𝑦) ↔ 𝐴 ⊆ (𝑈𝑉)))
3231notbid 321 . . . . . . . 8 (𝑦 = 𝑉 → (¬ 𝐴 ⊆ (𝑈𝑦) ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3329, 32bitr3id 288 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3427, 33imbi12d 348 . . . . . 6 (𝑦 = 𝑉 → ((((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3521, 34rspc2v 3619 . . . . 5 ((𝑈𝐽𝑉𝐽) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3610, 11, 35syl2anc 587 . . . 4 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
379, 36mpid 44 . . 3 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → ¬ 𝐴 ⊆ (𝑈𝑉)))
385, 37sylbid 243 . 2 (𝜑 → ((𝐽t 𝐴) ∈ Conn → ¬ 𝐴 ⊆ (𝑈𝑉)))
391, 38mt2d 138 1 (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  cun 3917  cin 3918  wss 3919  c0 4276  cfv 6344  (class class class)co 7146  t crest 16692  TopOnctopon 21513  Conncconn 22014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-oadd 8098  df-er 8281  df-en 8502  df-fin 8505  df-fi 8868  df-rest 16694  df-topgen 16715  df-top 21497  df-topon 21514  df-bases 21549  df-cld 21622  df-conn 22015
This theorem is referenced by:  iunconnlem  22030  clsconn  22033  reconnlem1  23429  ordtconnlem1  31194
  Copyright terms: Public domain W3C validator