MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconnsubb Structured version   Visualization version   GIF version

Theorem nconnsubb 23432
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconnsubb.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
nconnsubb.3 (𝜑𝐴𝑋)
nconnsubb.4 (𝜑𝑈𝐽)
nconnsubb.5 (𝜑𝑉𝐽)
nconnsubb.6 (𝜑 → (𝑈𝐴) ≠ ∅)
nconnsubb.7 (𝜑 → (𝑉𝐴) ≠ ∅)
nconnsubb.8 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
nconnsubb.9 (𝜑𝐴 ⊆ (𝑈𝑉))
Assertion
Ref Expression
nconnsubb (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)

Proof of Theorem nconnsubb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconnsubb.9 . 2 (𝜑𝐴 ⊆ (𝑈𝑉))
2 nconnsubb.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 nconnsubb.3 . . . 4 (𝜑𝐴𝑋)
4 connsuba 23429 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
52, 3, 4syl2anc 584 . . 3 (𝜑 → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
6 nconnsubb.6 . . . . 5 (𝜑 → (𝑈𝐴) ≠ ∅)
7 nconnsubb.7 . . . . 5 (𝜑 → (𝑉𝐴) ≠ ∅)
8 nconnsubb.8 . . . . 5 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
96, 7, 83jca 1128 . . . 4 (𝜑 → ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅))
10 nconnsubb.4 . . . . 5 (𝜑𝑈𝐽)
11 nconnsubb.5 . . . . 5 (𝜑𝑉𝐽)
12 ineq1 4212 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐴) = (𝑈𝐴))
1312neeq1d 2999 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐴) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
14 ineq1 4212 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1514ineq1d 4218 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
1615eqeq1d 2738 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑦) ∩ 𝐴) = ∅))
1713, 163anbi13d 1439 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅)))
18 uneq1 4160 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1918ineq1d 4218 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
2019neeq1d 2999 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴))
2117, 20imbi12d 344 . . . . . 6 (𝑥 = 𝑈 → ((((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)))
22 ineq1 4212 . . . . . . . . 9 (𝑦 = 𝑉 → (𝑦𝐴) = (𝑉𝐴))
2322neeq1d 2999 . . . . . . . 8 (𝑦 = 𝑉 → ((𝑦𝐴) ≠ ∅ ↔ (𝑉𝐴) ≠ ∅))
24 ineq2 4213 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
2524ineq1d 4218 . . . . . . . . 9 (𝑦 = 𝑉 → ((𝑈𝑦) ∩ 𝐴) = ((𝑈𝑉) ∩ 𝐴))
2625eqeq1d 2738 . . . . . . . 8 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑉) ∩ 𝐴) = ∅))
2723, 263anbi23d 1440 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅)))
28 sseqin2 4222 . . . . . . . . 9 (𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) = 𝐴)
2928necon3bbii 2987 . . . . . . . 8 𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)
30 uneq2 4161 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
3130sseq2d 4015 . . . . . . . . 9 (𝑦 = 𝑉 → (𝐴 ⊆ (𝑈𝑦) ↔ 𝐴 ⊆ (𝑈𝑉)))
3231notbid 318 . . . . . . . 8 (𝑦 = 𝑉 → (¬ 𝐴 ⊆ (𝑈𝑦) ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3329, 32bitr3id 285 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3427, 33imbi12d 344 . . . . . 6 (𝑦 = 𝑉 → ((((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3521, 34rspc2v 3632 . . . . 5 ((𝑈𝐽𝑉𝐽) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3610, 11, 35syl2anc 584 . . . 4 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
379, 36mpid 44 . . 3 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → ¬ 𝐴 ⊆ (𝑈𝑉)))
385, 37sylbid 240 . 2 (𝜑 → ((𝐽t 𝐴) ∈ Conn → ¬ 𝐴 ⊆ (𝑈𝑉)))
391, 38mt2d 136 1 (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cun 3948  cin 3949  wss 3950  c0 4332  cfv 6560  (class class class)co 7432  t crest 17466  TopOnctopon 22917  Conncconn 23420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-en 8987  df-fin 8990  df-fi 9452  df-rest 17468  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-cld 23028  df-conn 23421
This theorem is referenced by:  iunconnlem  23436  clsconn  23439  reconnlem1  24849  ordtconnlem1  33924
  Copyright terms: Public domain W3C validator