Step | Hyp | Ref
| Expression |
1 | | dochsatshp.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
2 | | eqid 2732 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
3 | | dochsatshp.a |
. . . 4
β’ π΄ = (LSAtomsβπ) |
4 | | dochsatshp.h |
. . . . 5
β’ π» = (LHypβπΎ) |
5 | | dochsatshp.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
6 | 4, 5, 1 | dvhlmod 39969 |
. . . 4
β’ (π β π β LMod) |
7 | | dochsatshp.q |
. . . 4
β’ (π β π β π΄) |
8 | 2, 3, 6, 7 | lsatssv 37856 |
. . 3
β’ (π β π β (Baseβπ)) |
9 | | eqid 2732 |
. . . 4
β’
(LSubSpβπ) =
(LSubSpβπ) |
10 | | dochsatshp.o |
. . . 4
β’ β₯ =
((ocHβπΎ)βπ) |
11 | 4, 5, 2, 9, 10 | dochlss 40213 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β (LSubSpβπ)) |
12 | 1, 8, 11 | syl2anc 584 |
. 2
β’ (π β ( β₯ βπ) β (LSubSpβπ)) |
13 | | eqid 2732 |
. . . 4
β’
(0gβπ) = (0gβπ) |
14 | 13, 3, 6, 7 | lsatn0 37857 |
. . 3
β’ (π β π β {(0gβπ)}) |
15 | 4, 5, 10, 2, 13 | doch0 40217 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β ( β₯
β{(0gβπ)}) = (Baseβπ)) |
16 | 1, 15 | syl 17 |
. . . . . 6
β’ (π β ( β₯
β{(0gβπ)}) = (Baseβπ)) |
17 | 16 | eqeq2d 2743 |
. . . . 5
β’ (π β (( β₯ βπ) = ( β₯
β{(0gβπ)}) β ( β₯ βπ) = (Baseβπ))) |
18 | | eqid 2732 |
. . . . . 6
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
19 | 4, 5, 18, 3 | dih1dimat 40189 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran ((DIsoHβπΎ)βπ)) |
20 | 1, 7, 19 | syl2anc 584 |
. . . . . 6
β’ (π β π β ran ((DIsoHβπΎ)βπ)) |
21 | 4, 18, 5, 13 | dih0rn 40143 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β {(0gβπ)} β ran
((DIsoHβπΎ)βπ)) |
22 | 1, 21 | syl 17 |
. . . . . 6
β’ (π β
{(0gβπ)}
β ran ((DIsoHβπΎ)βπ)) |
23 | 4, 18, 10, 1, 20, 22 | doch11 40232 |
. . . . 5
β’ (π β (( β₯ βπ) = ( β₯
β{(0gβπ)}) β π = {(0gβπ)})) |
24 | 17, 23 | bitr3d 280 |
. . . 4
β’ (π β (( β₯ βπ) = (Baseβπ) β π = {(0gβπ)})) |
25 | 24 | necon3bid 2985 |
. . 3
β’ (π β (( β₯ βπ) β (Baseβπ) β π β {(0gβπ)})) |
26 | 14, 25 | mpbird 256 |
. 2
β’ (π β ( β₯ βπ) β (Baseβπ)) |
27 | | eqid 2732 |
. . . . . 6
β’
(LSpanβπ) =
(LSpanβπ) |
28 | 2, 27, 13, 3 | islsat 37849 |
. . . . 5
β’ (π β LMod β (π β π΄ β βπ£ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π£}))) |
29 | 6, 28 | syl 17 |
. . . 4
β’ (π β (π β π΄ β βπ£ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π£}))) |
30 | 7, 29 | mpbid 231 |
. . 3
β’ (π β βπ£ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π£})) |
31 | | eldifi 4125 |
. . . . . . 7
β’ (π£ β ((Baseβπ) β
{(0gβπ)})
β π£ β
(Baseβπ)) |
32 | 31 | adantr 481 |
. . . . . 6
β’ ((π£ β ((Baseβπ) β
{(0gβπ)})
β§ π =
((LSpanβπ)β{π£})) β π£ β (Baseβπ)) |
33 | 32 | a1i 11 |
. . . . 5
β’ (π β ((π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£})) β π£ β (Baseβπ))) |
34 | 9, 27 | lspid 20585 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ ( β₯
βπ) β
(LSubSpβπ)) β
((LSpanβπ)β(
β₯
βπ)) = ( β₯
βπ)) |
35 | 6, 12, 34 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β ((LSpanβπ)β( β₯ βπ)) = ( β₯ βπ)) |
36 | 35 | uneq1d 4161 |
. . . . . . . . . 10
β’ (π β (((LSpanβπ)β( β₯ βπ)) βͺ ((LSpanβπ)β{π£})) = (( β₯ βπ) βͺ ((LSpanβπ)β{π£}))) |
37 | 36 | fveq2d 6892 |
. . . . . . . . 9
β’ (π β ((LSpanβπ)β(((LSpanβπ)β( β₯ βπ)) βͺ ((LSpanβπ)β{π£}))) = ((LSpanβπ)β(( β₯ βπ) βͺ ((LSpanβπ)β{π£})))) |
38 | 37 | adantr 481 |
. . . . . . . 8
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(((LSpanβπ)β( β₯ βπ)) βͺ ((LSpanβπ)β{π£}))) = ((LSpanβπ)β(( β₯ βπ) βͺ ((LSpanβπ)β{π£})))) |
39 | 6 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β π β LMod) |
40 | 2, 9 | lssss 20539 |
. . . . . . . . . . 11
β’ (( β₯
βπ) β
(LSubSpβπ) β (
β₯
βπ) β
(Baseβπ)) |
41 | 12, 40 | syl 17 |
. . . . . . . . . 10
β’ (π β ( β₯ βπ) β (Baseβπ)) |
42 | 41 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ( β₯ βπ) β (Baseβπ)) |
43 | 31 | snssd 4811 |
. . . . . . . . . . 11
β’ (π£ β ((Baseβπ) β
{(0gβπ)})
β {π£} β
(Baseβπ)) |
44 | 43 | adantr 481 |
. . . . . . . . . 10
β’ ((π£ β ((Baseβπ) β
{(0gβπ)})
β§ π =
((LSpanβπ)β{π£})) β {π£} β (Baseβπ)) |
45 | 44 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β {π£} β (Baseβπ)) |
46 | 2, 27 | lspun 20590 |
. . . . . . . . 9
β’ ((π β LMod β§ ( β₯
βπ) β
(Baseβπ) β§ {π£} β (Baseβπ)) β ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = ((LSpanβπ)β(((LSpanβπ)β( β₯ βπ)) βͺ ((LSpanβπ)β{π£})))) |
47 | 39, 42, 45, 46 | syl3anc 1371 |
. . . . . . . 8
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = ((LSpanβπ)β(((LSpanβπ)β( β₯ βπ)) βͺ ((LSpanβπ)β{π£})))) |
48 | | uneq2 4156 |
. . . . . . . . . . 11
β’ (π = ((LSpanβπ)β{π£}) β (( β₯ βπ) βͺ π) = (( β₯ βπ) βͺ ((LSpanβπ)β{π£}))) |
49 | 48 | fveq2d 6892 |
. . . . . . . . . 10
β’ (π = ((LSpanβπ)β{π£}) β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = ((LSpanβπ)β(( β₯ βπ) βͺ ((LSpanβπ)β{π£})))) |
50 | 49 | adantl 482 |
. . . . . . . . 9
β’ ((π£ β ((Baseβπ) β
{(0gβπ)})
β§ π =
((LSpanβπ)β{π£})) β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = ((LSpanβπ)β(( β₯ βπ) βͺ ((LSpanβπ)β{π£})))) |
51 | 50 | adantl 482 |
. . . . . . . 8
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = ((LSpanβπ)β(( β₯ βπ) βͺ ((LSpanβπ)β{π£})))) |
52 | 38, 47, 51 | 3eqtr4d 2782 |
. . . . . . 7
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = ((LSpanβπ)β(( β₯ βπ) βͺ π))) |
53 | | eqid 2732 |
. . . . . . . . . . 11
β’
((joinHβπΎ)βπ) = ((joinHβπΎ)βπ) |
54 | | eqid 2732 |
. . . . . . . . . . 11
β’
(LSSumβπ) =
(LSSumβπ) |
55 | 4, 18, 5, 2, 10 | dochcl 40212 |
. . . . . . . . . . . 12
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
56 | 1, 8, 55 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β ( β₯ βπ) β ran ((DIsoHβπΎ)βπ)) |
57 | 4, 18, 53, 5, 54, 3, 1, 56, 7 | dihjat2 40290 |
. . . . . . . . . 10
β’ (π β (( β₯ βπ)((joinHβπΎ)βπ)π) = (( β₯ βπ)(LSSumβπ)π)) |
58 | 4, 5, 2, 53, 1, 41, 8 | djhcom 40264 |
. . . . . . . . . 10
β’ (π β (( β₯ βπ)((joinHβπΎ)βπ)π) = (π((joinHβπΎ)βπ)( β₯ βπ))) |
59 | 9, 3, 6, 7 | lsatlssel 37855 |
. . . . . . . . . . 11
β’ (π β π β (LSubSpβπ)) |
60 | 9, 27, 54 | lsmsp 20689 |
. . . . . . . . . . 11
β’ ((π β LMod β§ ( β₯
βπ) β
(LSubSpβπ) β§
π β
(LSubSpβπ)) β ((
β₯
βπ)(LSSumβπ)π) = ((LSpanβπ)β(( β₯ βπ) βͺ π))) |
61 | 6, 12, 59, 60 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β (( β₯ βπ)(LSSumβπ)π) = ((LSpanβπ)β(( β₯ βπ) βͺ π))) |
62 | 57, 58, 61 | 3eqtr3rd 2781 |
. . . . . . . . 9
β’ (π β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = (π((joinHβπΎ)βπ)( β₯ βπ))) |
63 | 4, 5, 2, 10, 53 | djhexmid 40270 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ π β (Baseβπ)) β (π((joinHβπΎ)βπ)( β₯ βπ)) = (Baseβπ)) |
64 | 1, 8, 63 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (π((joinHβπΎ)βπ)( β₯ βπ)) = (Baseβπ)) |
65 | 62, 64 | eqtrd 2772 |
. . . . . . . 8
β’ (π β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = (Baseβπ)) |
66 | 65 | adantr 481 |
. . . . . . 7
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(( β₯ βπ) βͺ π)) = (Baseβπ)) |
67 | 52, 66 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ (π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£}))) β ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ)) |
68 | 67 | ex 413 |
. . . . 5
β’ (π β ((π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£})) β ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ))) |
69 | 33, 68 | jcad 513 |
. . . 4
β’ (π β ((π£ β ((Baseβπ) β {(0gβπ)}) β§ π = ((LSpanβπ)β{π£})) β (π£ β (Baseβπ) β§ ((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ)))) |
70 | 69 | reximdv2 3164 |
. . 3
β’ (π β (βπ£ β ((Baseβπ) β {(0gβπ)})π = ((LSpanβπ)β{π£}) β βπ£ β (Baseβπ)((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ))) |
71 | 30, 70 | mpd 15 |
. 2
β’ (π β βπ£ β (Baseβπ)((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ)) |
72 | 4, 5, 1 | dvhlvec 39968 |
. . 3
β’ (π β π β LVec) |
73 | | dochsatshp.y |
. . . 4
β’ π = (LSHypβπ) |
74 | 2, 27, 9, 73 | islshp 37837 |
. . 3
β’ (π β LVec β (( β₯
βπ) β π β (( β₯ βπ) β (LSubSpβπ) β§ ( β₯ βπ) β (Baseβπ) β§ βπ£ β (Baseβπ)((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ)))) |
75 | 72, 74 | syl 17 |
. 2
β’ (π β (( β₯ βπ) β π β (( β₯ βπ) β (LSubSpβπ) β§ ( β₯ βπ) β (Baseβπ) β§ βπ£ β (Baseβπ)((LSpanβπ)β(( β₯ βπ) βͺ {π£})) = (Baseβπ)))) |
76 | 12, 26, 71, 75 | mpbir3and 1342 |
1
β’ (π β ( β₯ βπ) β π) |