Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiuneneq Structured version   Visualization version   GIF version

Theorem fiuneneq 43182
Description: Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
fiuneneq ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))

Proof of Theorem fiuneneq
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ∈ Fin)
2 enfi 9209 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
323ad2ant1 1133 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
41, 3mpbid 232 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ∈ Fin)
5 unfi 9193 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
61, 4, 5syl2anc 584 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ∈ Fin)
7 ssun1 4158 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
87a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴𝐵))
9 simp3 1138 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐴)
109ensymd 9027 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴𝐵))
11 fisseneq 9275 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐴 = (𝐴𝐵))
126, 8, 10, 11syl3anc 1372 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = (𝐴𝐵))
13 ssun2 4159 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1413a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴𝐵))
15 simp1 1136 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴𝐵)
16 entr 9028 . . . . . . 7 (((𝐴𝐵) ≈ 𝐴𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
179, 15, 16syl2anc 584 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐵)
1817ensymd 9027 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴𝐵))
19 fisseneq 9275 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴𝐵) ∧ 𝐵 ≈ (𝐴𝐵)) → 𝐵 = (𝐴𝐵))
206, 14, 18, 19syl3anc 1372 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 = (𝐴𝐵))
2112, 20eqtr4d 2772 . . 3 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = 𝐵)
22213expia 1121 . 2 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
23 enrefg 9006 . . . 4 (𝐴 ∈ Fin → 𝐴𝐴)
2423adantl 481 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐴)
25 unidm 4137 . . . . 5 (𝐴𝐴) = 𝐴
26 uneq2 4142 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
2725, 26eqtr3id 2783 . . . 4 (𝐴 = 𝐵𝐴 = (𝐴𝐵))
2827breq1d 5133 . . 3 (𝐴 = 𝐵 → (𝐴𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
2924, 28syl5ibcom 245 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴𝐵) ≈ 𝐴))
3022, 29impbid 212 1 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  cun 3929  wss 3931   class class class wbr 5123  cen 8964  Fincfn 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971
This theorem is referenced by:  idomsubgmo  43183
  Copyright terms: Public domain W3C validator