Proof of Theorem fiuneneq
Step | Hyp | Ref
| Expression |
1 | | simp2 1139 |
. . . . . 6
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 ∈ Fin) |
2 | | enfi 8865 |
. . . . . . . 8
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
3 | 2 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
4 | 1, 3 | mpbid 235 |
. . . . . 6
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐵 ∈ Fin) |
5 | | unfi 8850 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) |
6 | 1, 4, 5 | syl2anc 587 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → (𝐴 ∪ 𝐵) ∈ Fin) |
7 | | ssun1 4086 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
8 | 7 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
9 | | simp3 1140 |
. . . . . 6
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → (𝐴 ∪ 𝐵) ≈ 𝐴) |
10 | 9 | ensymd 8679 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴 ∪ 𝐵)) |
11 | | fisseneq 8889 |
. . . . 5
⊢ (((𝐴 ∪ 𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ 𝐴 ≈ (𝐴 ∪ 𝐵)) → 𝐴 = (𝐴 ∪ 𝐵)) |
12 | 6, 8, 10, 11 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 = (𝐴 ∪ 𝐵)) |
13 | | ssun2 4087 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
14 | 13 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) |
15 | | simp1 1138 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 ≈ 𝐵) |
16 | | entr 8680 |
. . . . . . 7
⊢ (((𝐴 ∪ 𝐵) ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → (𝐴 ∪ 𝐵) ≈ 𝐵) |
17 | 9, 15, 16 | syl2anc 587 |
. . . . . 6
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → (𝐴 ∪ 𝐵) ≈ 𝐵) |
18 | 17 | ensymd 8679 |
. . . . 5
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴 ∪ 𝐵)) |
19 | | fisseneq 8889 |
. . . . 5
⊢ (((𝐴 ∪ 𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ 𝐵 ≈ (𝐴 ∪ 𝐵)) → 𝐵 = (𝐴 ∪ 𝐵)) |
20 | 6, 14, 18, 19 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐵 = (𝐴 ∪ 𝐵)) |
21 | 12, 20 | eqtr4d 2780 |
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin ∧ (𝐴 ∪ 𝐵) ≈ 𝐴) → 𝐴 = 𝐵) |
22 | 21 | 3expia 1123 |
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 → 𝐴 = 𝐵)) |
23 | | enrefg 8660 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) |
24 | 23 | adantl 485 |
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → 𝐴 ≈ 𝐴) |
25 | | unidm 4066 |
. . . . 5
⊢ (𝐴 ∪ 𝐴) = 𝐴 |
26 | | uneq2 4071 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐴) = (𝐴 ∪ 𝐵)) |
27 | 25, 26 | eqtr3id 2792 |
. . . 4
⊢ (𝐴 = 𝐵 → 𝐴 = (𝐴 ∪ 𝐵)) |
28 | 27 | breq1d 5063 |
. . 3
⊢ (𝐴 = 𝐵 → (𝐴 ≈ 𝐴 ↔ (𝐴 ∪ 𝐵) ≈ 𝐴)) |
29 | 24, 28 | syl5ibcom 248 |
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴 ∪ 𝐵) ≈ 𝐴)) |
30 | 22, 29 | impbid 215 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) |