Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiuneneq Structured version   Visualization version   GIF version

Theorem fiuneneq 43163
Description: Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
fiuneneq ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))

Proof of Theorem fiuneneq
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ∈ Fin)
2 enfi 9199 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
323ad2ant1 1133 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
41, 3mpbid 232 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ∈ Fin)
5 unfi 9183 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
61, 4, 5syl2anc 584 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ∈ Fin)
7 ssun1 4153 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
87a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴𝐵))
9 simp3 1138 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐴)
109ensymd 9017 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴𝐵))
11 fisseneq 9263 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐴 = (𝐴𝐵))
126, 8, 10, 11syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = (𝐴𝐵))
13 ssun2 4154 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1413a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴𝐵))
15 simp1 1136 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴𝐵)
16 entr 9018 . . . . . . 7 (((𝐴𝐵) ≈ 𝐴𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
179, 15, 16syl2anc 584 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐵)
1817ensymd 9017 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴𝐵))
19 fisseneq 9263 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴𝐵) ∧ 𝐵 ≈ (𝐴𝐵)) → 𝐵 = (𝐴𝐵))
206, 14, 18, 19syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 = (𝐴𝐵))
2112, 20eqtr4d 2773 . . 3 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = 𝐵)
22213expia 1121 . 2 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
23 enrefg 8996 . . . 4 (𝐴 ∈ Fin → 𝐴𝐴)
2423adantl 481 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐴)
25 unidm 4132 . . . . 5 (𝐴𝐴) = 𝐴
26 uneq2 4137 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
2725, 26eqtr3id 2784 . . . 4 (𝐴 = 𝐵𝐴 = (𝐴𝐵))
2827breq1d 5129 . . 3 (𝐴 = 𝐵 → (𝐴𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
2924, 28syl5ibcom 245 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴𝐵) ≈ 𝐴))
3022, 29impbid 212 1 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cun 3924  wss 3926   class class class wbr 5119  cen 8954  Fincfn 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-om 7860  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961
This theorem is referenced by:  idomsubgmo  43164
  Copyright terms: Public domain W3C validator