Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiuneneq Structured version   Visualization version   GIF version

Theorem fiuneneq 43175
Description: Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
fiuneneq ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))

Proof of Theorem fiuneneq
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ∈ Fin)
2 enfi 9128 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
323ad2ant1 1133 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
41, 3mpbid 232 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ∈ Fin)
5 unfi 9112 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
61, 4, 5syl2anc 584 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ∈ Fin)
7 ssun1 4137 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
87a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴𝐵))
9 simp3 1138 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐴)
109ensymd 8953 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴𝐵))
11 fisseneq 9180 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐴 = (𝐴𝐵))
126, 8, 10, 11syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = (𝐴𝐵))
13 ssun2 4138 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1413a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴𝐵))
15 simp1 1136 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴𝐵)
16 entr 8954 . . . . . . 7 (((𝐴𝐵) ≈ 𝐴𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
179, 15, 16syl2anc 584 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐵)
1817ensymd 8953 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴𝐵))
19 fisseneq 9180 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴𝐵) ∧ 𝐵 ≈ (𝐴𝐵)) → 𝐵 = (𝐴𝐵))
206, 14, 18, 19syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 = (𝐴𝐵))
2112, 20eqtr4d 2767 . . 3 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = 𝐵)
22213expia 1121 . 2 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
23 enrefg 8932 . . . 4 (𝐴 ∈ Fin → 𝐴𝐴)
2423adantl 481 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐴)
25 unidm 4116 . . . . 5 (𝐴𝐴) = 𝐴
26 uneq2 4121 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
2725, 26eqtr3id 2778 . . . 4 (𝐴 = 𝐵𝐴 = (𝐴𝐵))
2827breq1d 5112 . . 3 (𝐴 = 𝐵 → (𝐴𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
2924, 28syl5ibcom 245 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴𝐵) ≈ 𝐴))
3022, 29impbid 212 1 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3909  wss 3911   class class class wbr 5102  cen 8892  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899
This theorem is referenced by:  idomsubgmo  43176
  Copyright terms: Public domain W3C validator