Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiuneneq Structured version   Visualization version   GIF version

Theorem fiuneneq 43188
Description: Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
fiuneneq ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))

Proof of Theorem fiuneneq
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ∈ Fin)
2 enfi 9157 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
323ad2ant1 1133 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
41, 3mpbid 232 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ∈ Fin)
5 unfi 9141 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
61, 4, 5syl2anc 584 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ∈ Fin)
7 ssun1 4144 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
87a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴𝐵))
9 simp3 1138 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐴)
109ensymd 8979 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴𝐵))
11 fisseneq 9211 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐴 = (𝐴𝐵))
126, 8, 10, 11syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = (𝐴𝐵))
13 ssun2 4145 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1413a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴𝐵))
15 simp1 1136 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴𝐵)
16 entr 8980 . . . . . . 7 (((𝐴𝐵) ≈ 𝐴𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
179, 15, 16syl2anc 584 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐵)
1817ensymd 8979 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴𝐵))
19 fisseneq 9211 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴𝐵) ∧ 𝐵 ≈ (𝐴𝐵)) → 𝐵 = (𝐴𝐵))
206, 14, 18, 19syl3anc 1373 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 = (𝐴𝐵))
2112, 20eqtr4d 2768 . . 3 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = 𝐵)
22213expia 1121 . 2 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
23 enrefg 8958 . . . 4 (𝐴 ∈ Fin → 𝐴𝐴)
2423adantl 481 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐴)
25 unidm 4123 . . . . 5 (𝐴𝐴) = 𝐴
26 uneq2 4128 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
2725, 26eqtr3id 2779 . . . 4 (𝐴 = 𝐵𝐴 = (𝐴𝐵))
2827breq1d 5120 . . 3 (𝐴 = 𝐵 → (𝐴𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
2924, 28syl5ibcom 245 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴𝐵) ≈ 𝐴))
3022, 29impbid 212 1 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  wss 3917   class class class wbr 5110  cen 8918  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925
This theorem is referenced by:  idomsubgmo  43189
  Copyright terms: Public domain W3C validator