Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiuneneq Structured version   Visualization version   GIF version

Theorem fiuneneq 40938
Description: Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
fiuneneq ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))

Proof of Theorem fiuneneq
StepHypRef Expression
1 simp2 1135 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ∈ Fin)
2 enfi 8933 . . . . . . . 8 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
323ad2ant1 1131 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
41, 3mpbid 231 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ∈ Fin)
5 unfi 8917 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
61, 4, 5syl2anc 583 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ∈ Fin)
7 ssun1 4102 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
87a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ⊆ (𝐴𝐵))
9 simp3 1136 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐴)
109ensymd 8746 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 ≈ (𝐴𝐵))
11 fisseneq 8963 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝐴 ≈ (𝐴𝐵)) → 𝐴 = (𝐴𝐵))
126, 8, 10, 11syl3anc 1369 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = (𝐴𝐵))
13 ssun2 4103 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1413a1i 11 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ⊆ (𝐴𝐵))
15 simp1 1134 . . . . . . 7 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴𝐵)
16 entr 8747 . . . . . . 7 (((𝐴𝐵) ≈ 𝐴𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
179, 15, 16syl2anc 583 . . . . . 6 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → (𝐴𝐵) ≈ 𝐵)
1817ensymd 8746 . . . . 5 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 ≈ (𝐴𝐵))
19 fisseneq 8963 . . . . 5 (((𝐴𝐵) ∈ Fin ∧ 𝐵 ⊆ (𝐴𝐵) ∧ 𝐵 ≈ (𝐴𝐵)) → 𝐵 = (𝐴𝐵))
206, 14, 18, 19syl3anc 1369 . . . 4 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐵 = (𝐴𝐵))
2112, 20eqtr4d 2781 . . 3 ((𝐴𝐵𝐴 ∈ Fin ∧ (𝐴𝐵) ≈ 𝐴) → 𝐴 = 𝐵)
22213expia 1119 . 2 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
23 enrefg 8727 . . . 4 (𝐴 ∈ Fin → 𝐴𝐴)
2423adantl 481 . . 3 ((𝐴𝐵𝐴 ∈ Fin) → 𝐴𝐴)
25 unidm 4082 . . . . 5 (𝐴𝐴) = 𝐴
26 uneq2 4087 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
2725, 26eqtr3id 2793 . . . 4 (𝐴 = 𝐵𝐴 = (𝐴𝐵))
2827breq1d 5080 . . 3 (𝐴 = 𝐵 → (𝐴𝐴 ↔ (𝐴𝐵) ≈ 𝐴))
2924, 28syl5ibcom 244 . 2 ((𝐴𝐵𝐴 ∈ Fin) → (𝐴 = 𝐵 → (𝐴𝐵) ≈ 𝐴))
3022, 29impbid 211 1 ((𝐴𝐵𝐴 ∈ Fin) → ((𝐴𝐵) ≈ 𝐴𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cun 3881  wss 3883   class class class wbr 5070  cen 8688  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by:  idomsubgmo  40939
  Copyright terms: Public domain W3C validator