Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph4i | Structured version Visualization version GIF version |
Description: Forward-only version of eldioph4b 40160. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
eldioph4b.a | ⊢ 𝑊 ∈ V |
eldioph4b.b | ⊢ ¬ 𝑊 ∈ Fin |
eldioph4b.c | ⊢ (𝑊 ∩ ℕ) = ∅ |
Ref | Expression |
---|---|
eldioph4i | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4063 | . . . . . . . 8 ⊢ (𝑡 = 𝑎 → (𝑡 ∪ 𝑤) = (𝑎 ∪ 𝑤)) | |
2 | 1 | fveqeq2d 6671 | . . . . . . 7 ⊢ (𝑡 = 𝑎 → ((𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
3 | 2 | rexbidv 3221 | . . . . . 6 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
4 | uneq2 4064 | . . . . . . . 8 ⊢ (𝑤 = 𝑏 → (𝑎 ∪ 𝑤) = (𝑎 ∪ 𝑏)) | |
5 | 4 | fveqeq2d 6671 | . . . . . . 7 ⊢ (𝑤 = 𝑏 → ((𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
6 | 5 | cbvrexvw 3362 | . . . . . 6 ⊢ (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0) |
7 | 3, 6 | bitrdi 290 | . . . . 5 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
8 | 7 | cbvrabv 3404 | . . . 4 ⊢ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0} |
9 | fveq1 6662 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∪ 𝑏)) = (𝑃‘(𝑎 ∪ 𝑏))) | |
10 | 9 | eqeq1d 2760 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
11 | 10 | rexbidv 3221 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
12 | 11 | rabbidv 3392 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) |
13 | 12 | rspceeqv 3558 | . . . 4 ⊢ ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
14 | 8, 13 | mpan2 690 | . . 3 ⊢ (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
15 | 14 | anim2i 619 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
16 | eldioph4b.a | . . 3 ⊢ 𝑊 ∈ V | |
17 | eldioph4b.b | . . 3 ⊢ ¬ 𝑊 ∈ Fin | |
18 | eldioph4b.c | . . 3 ⊢ (𝑊 ∩ ℕ) = ∅ | |
19 | 16, 17, 18 | eldioph4b 40160 | . 2 ⊢ ({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
20 | 15, 19 | sylibr 237 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 {crab 3074 Vcvv 3409 ∪ cun 3858 ∩ cin 3859 ∅c0 4227 ‘cfv 6340 (class class class)co 7156 ↑m cmap 8422 Fincfn 8540 0cc0 10588 1c1 10589 ℕcn 11687 ℕ0cn0 11947 ...cfz 12952 mzPolycmzp 40071 Diophcdioph 40104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-hash 13754 df-mzpcl 40072 df-mzp 40073 df-dioph 40105 |
This theorem is referenced by: diophren 40162 |
Copyright terms: Public domain | W3C validator |