![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph4i | Structured version Visualization version GIF version |
Description: Forward-only version of eldioph4b 42063. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
eldioph4b.a | ⊢ 𝑊 ∈ V |
eldioph4b.b | ⊢ ¬ 𝑊 ∈ Fin |
eldioph4b.c | ⊢ (𝑊 ∩ ℕ) = ∅ |
Ref | Expression |
---|---|
eldioph4i | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4149 | . . . . . . . 8 ⊢ (𝑡 = 𝑎 → (𝑡 ∪ 𝑤) = (𝑎 ∪ 𝑤)) | |
2 | 1 | fveqeq2d 6890 | . . . . . . 7 ⊢ (𝑡 = 𝑎 → ((𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
3 | 2 | rexbidv 3170 | . . . . . 6 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
4 | uneq2 4150 | . . . . . . . 8 ⊢ (𝑤 = 𝑏 → (𝑎 ∪ 𝑤) = (𝑎 ∪ 𝑏)) | |
5 | 4 | fveqeq2d 6890 | . . . . . . 7 ⊢ (𝑤 = 𝑏 → ((𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
6 | 5 | cbvrexvw 3227 | . . . . . 6 ⊢ (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0) |
7 | 3, 6 | bitrdi 287 | . . . . 5 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
8 | 7 | cbvrabv 3434 | . . . 4 ⊢ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0} |
9 | fveq1 6881 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∪ 𝑏)) = (𝑃‘(𝑎 ∪ 𝑏))) | |
10 | 9 | eqeq1d 2726 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
11 | 10 | rexbidv 3170 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
12 | 11 | rabbidv 3432 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) |
13 | 12 | rspceeqv 3626 | . . . 4 ⊢ ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
14 | 8, 13 | mpan2 688 | . . 3 ⊢ (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
15 | 14 | anim2i 616 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
16 | eldioph4b.a | . . 3 ⊢ 𝑊 ∈ V | |
17 | eldioph4b.b | . . 3 ⊢ ¬ 𝑊 ∈ Fin | |
18 | eldioph4b.c | . . 3 ⊢ (𝑊 ∩ ℕ) = ∅ | |
19 | 16, 17, 18 | eldioph4b 42063 | . 2 ⊢ ({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
20 | 15, 19 | sylibr 233 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 {crab 3424 Vcvv 3466 ∪ cun 3939 ∩ cin 3940 ∅c0 4315 ‘cfv 6534 (class class class)co 7402 ↑m cmap 8817 Fincfn 8936 0cc0 11107 1c1 11108 ℕcn 12210 ℕ0cn0 12470 ...cfz 13482 mzPolycmzp 41974 Diophcdioph 42007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-n0 12471 df-z 12557 df-uz 12821 df-fz 13483 df-hash 14289 df-mzpcl 41975 df-mzp 41976 df-dioph 42008 |
This theorem is referenced by: diophren 42065 |
Copyright terms: Public domain | W3C validator |