![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph4i | Structured version Visualization version GIF version |
Description: Forward-only version of eldioph4b 38327. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
Ref | Expression |
---|---|
eldioph4b.a | ⊢ 𝑊 ∈ V |
eldioph4b.b | ⊢ ¬ 𝑊 ∈ Fin |
eldioph4b.c | ⊢ (𝑊 ∩ ℕ) = ∅ |
Ref | Expression |
---|---|
eldioph4i | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3982 | . . . . . . . 8 ⊢ (𝑡 = 𝑎 → (𝑡 ∪ 𝑤) = (𝑎 ∪ 𝑤)) | |
2 | 1 | fveqeq2d 6454 | . . . . . . 7 ⊢ (𝑡 = 𝑎 → ((𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
3 | 2 | rexbidv 3236 | . . . . . 6 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
4 | uneq2 3983 | . . . . . . . 8 ⊢ (𝑤 = 𝑏 → (𝑎 ∪ 𝑤) = (𝑎 ∪ 𝑏)) | |
5 | 4 | fveqeq2d 6454 | . . . . . . 7 ⊢ (𝑤 = 𝑏 → ((𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
6 | 5 | cbvrexv 3367 | . . . . . 6 ⊢ (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0) |
7 | 3, 6 | syl6bb 279 | . . . . 5 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
8 | 7 | cbvrabv 3395 | . . . 4 ⊢ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0} |
9 | fveq1 6445 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∪ 𝑏)) = (𝑃‘(𝑎 ∪ 𝑏))) | |
10 | 9 | eqeq1d 2779 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
11 | 10 | rexbidv 3236 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
12 | 11 | rabbidv 3385 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) |
13 | 12 | rspceeqv 3528 | . . . 4 ⊢ ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
14 | 8, 13 | mpan2 681 | . . 3 ⊢ (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
15 | 14 | anim2i 610 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
16 | eldioph4b.a | . . 3 ⊢ 𝑊 ∈ V | |
17 | eldioph4b.b | . . 3 ⊢ ¬ 𝑊 ∈ Fin | |
18 | eldioph4b.c | . . 3 ⊢ (𝑊 ∩ ℕ) = ∅ | |
19 | 16, 17, 18 | eldioph4b 38327 | . 2 ⊢ ({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
20 | 15, 19 | sylibr 226 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑𝑚 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∃wrex 3090 {crab 3093 Vcvv 3397 ∪ cun 3789 ∩ cin 3790 ∅c0 4140 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 Fincfn 8241 0cc0 10272 1c1 10273 ℕcn 11374 ℕ0cn0 11642 ...cfz 12643 mzPolycmzp 38237 Diophcdioph 38270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-hash 13436 df-mzpcl 38238 df-mzp 38239 df-dioph 38271 |
This theorem is referenced by: diophren 38329 |
Copyright terms: Public domain | W3C validator |