Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4i Structured version   Visualization version   GIF version

Theorem eldioph4i 42795
Description: Forward-only version of eldioph4b 42794. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4i ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑊,𝑤   𝑡,𝑁,𝑤   𝑡,𝑃,𝑤

Proof of Theorem eldioph4i
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4120 . . . . . . . 8 (𝑡 = 𝑎 → (𝑡𝑤) = (𝑎𝑤))
21fveqeq2d 6849 . . . . . . 7 (𝑡 = 𝑎 → ((𝑃‘(𝑡𝑤)) = 0 ↔ (𝑃‘(𝑎𝑤)) = 0))
32rexbidv 3157 . . . . . 6 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑤)) = 0))
4 uneq2 4121 . . . . . . . 8 (𝑤 = 𝑏 → (𝑎𝑤) = (𝑎𝑏))
54fveqeq2d 6849 . . . . . . 7 (𝑤 = 𝑏 → ((𝑃‘(𝑎𝑤)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
65cbvrexvw 3214 . . . . . 6 (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0)
73, 6bitrdi 287 . . . . 5 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0))
87cbvrabv 3413 . . . 4 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0}
9 fveq1 6840 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
109eqeq1d 2731 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
1110rexbidv 3157 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0))
1211rabbidv 3410 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0})
1312rspceeqv 3608 . . . 4 ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0})
148, 13mpan2 691 . . 3 (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1514anim2i 617 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
16 eldioph4b.a . . 3 𝑊 ∈ V
17 eldioph4b.b . . 3 ¬ 𝑊 ∈ Fin
18 eldioph4b.c . . 3 (𝑊 ∩ ℕ) = ∅
1916, 17, 18eldioph4b 42794 . 2 ({𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
2015, 19sylibr 234 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  cun 3909  cin 3910  c0 4292  cfv 6500  (class class class)co 7370  m cmap 8777  Fincfn 8896  0cc0 11047  1c1 11048  cn 12165  0cn0 12421  ...cfz 13447  mzPolycmzp 42705  Diophcdioph 42738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8649  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-dju 9833  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-n0 12422  df-z 12509  df-uz 12773  df-fz 13448  df-hash 14275  df-mzpcl 42706  df-mzp 42707  df-dioph 42739
This theorem is referenced by:  diophren  42796
  Copyright terms: Public domain W3C validator