Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4i Structured version   Visualization version   GIF version

Theorem eldioph4i 38328
Description: Forward-only version of eldioph4b 38327. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4i ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑊,𝑤   𝑡,𝑁,𝑤   𝑡,𝑃,𝑤

Proof of Theorem eldioph4i
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3982 . . . . . . . 8 (𝑡 = 𝑎 → (𝑡𝑤) = (𝑎𝑤))
21fveqeq2d 6454 . . . . . . 7 (𝑡 = 𝑎 → ((𝑃‘(𝑡𝑤)) = 0 ↔ (𝑃‘(𝑎𝑤)) = 0))
32rexbidv 3236 . . . . . 6 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0))
4 uneq2 3983 . . . . . . . 8 (𝑤 = 𝑏 → (𝑎𝑤) = (𝑎𝑏))
54fveqeq2d 6454 . . . . . . 7 (𝑤 = 𝑏 → ((𝑃‘(𝑎𝑤)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
65cbvrexv 3367 . . . . . 6 (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0)
73, 6syl6bb 279 . . . . 5 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
87cbvrabv 3395 . . . 4 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}
9 fveq1 6445 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
109eqeq1d 2779 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
1110rexbidv 3236 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0))
1211rabbidv 3385 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0})
1312rspceeqv 3528 . . . 4 ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑎𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
148, 13mpan2 681 . . 3 (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1514anim2i 610 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
16 eldioph4b.a . . 3 𝑊 ∈ V
17 eldioph4b.b . . 3 ¬ 𝑊 ∈ Fin
18 eldioph4b.c . . 3 (𝑊 ∩ ℕ) = ∅
1916, 17, 18eldioph4b 38327 . 2 ({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
2015, 19sylibr 226 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2106  wrex 3090  {crab 3093  Vcvv 3397  cun 3789  cin 3790  c0 4140  cfv 6135  (class class class)co 6922  𝑚 cmap 8140  Fincfn 8241  0cc0 10272  1c1 10273  cn 11374  0cn0 11642  ...cfz 12643  mzPolycmzp 38237  Diophcdioph 38270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-hash 13436  df-mzpcl 38238  df-mzp 38239  df-dioph 38271
This theorem is referenced by:  diophren  38329
  Copyright terms: Public domain W3C validator