| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldioph4i | Structured version Visualization version GIF version | ||
| Description: Forward-only version of eldioph4b 42767. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| Ref | Expression |
|---|---|
| eldioph4b.a | ⊢ 𝑊 ∈ V |
| eldioph4b.b | ⊢ ¬ 𝑊 ∈ Fin |
| eldioph4b.c | ⊢ (𝑊 ∩ ℕ) = ∅ |
| Ref | Expression |
|---|---|
| eldioph4i | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4143 | . . . . . . . 8 ⊢ (𝑡 = 𝑎 → (𝑡 ∪ 𝑤) = (𝑎 ∪ 𝑤)) | |
| 2 | 1 | fveqeq2d 6895 | . . . . . . 7 ⊢ (𝑡 = 𝑎 → ((𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
| 3 | 2 | rexbidv 3166 | . . . . . 6 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0)) |
| 4 | uneq2 4144 | . . . . . . . 8 ⊢ (𝑤 = 𝑏 → (𝑎 ∪ 𝑤) = (𝑎 ∪ 𝑏)) | |
| 5 | 4 | fveqeq2d 6895 | . . . . . . 7 ⊢ (𝑤 = 𝑏 → ((𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
| 6 | 5 | cbvrexvw 3225 | . . . . . 6 ⊢ (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0) |
| 7 | 3, 6 | bitrdi 287 | . . . . 5 ⊢ (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
| 8 | 7 | cbvrabv 3431 | . . . 4 ⊢ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0} |
| 9 | fveq1 6886 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑎 ∪ 𝑏)) = (𝑃‘(𝑎 ∪ 𝑏))) | |
| 10 | 9 | eqeq1d 2736 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → ((𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ (𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
| 11 | 10 | rexbidv 3166 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0)) |
| 12 | 11 | rabbidv 3428 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) |
| 13 | 12 | rspceeqv 3629 | . . . 4 ⊢ ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑎 ∪ 𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
| 14 | 8, 13 | mpan2 691 | . . 3 ⊢ (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0}) |
| 15 | 14 | anim2i 617 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
| 16 | eldioph4b.a | . . 3 ⊢ 𝑊 ∈ V | |
| 17 | eldioph4b.b | . . 3 ⊢ ¬ 𝑊 ∈ Fin | |
| 18 | eldioph4b.c | . . 3 ⊢ (𝑊 ∩ ℕ) = ∅ | |
| 19 | 16, 17, 18 | eldioph4b 42767 | . 2 ⊢ ({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} = {𝑎 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑎 ∪ 𝑏)) = 0})) |
| 20 | 15, 19 | sylibr 234 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3420 Vcvv 3464 ∪ cun 3931 ∩ cin 3932 ∅c0 4315 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 Fincfn 8968 0cc0 11138 1c1 11139 ℕcn 12249 ℕ0cn0 12510 ...cfz 13530 mzPolycmzp 42678 Diophcdioph 42711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-oadd 8493 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-hash 14353 df-mzpcl 42679 df-mzp 42680 df-dioph 42712 |
| This theorem is referenced by: diophren 42769 |
| Copyright terms: Public domain | W3C validator |