Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4i Structured version   Visualization version   GIF version

Theorem eldioph4i 42768
Description: Forward-only version of eldioph4b 42767. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4i ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑊,𝑤   𝑡,𝑁,𝑤   𝑡,𝑃,𝑤

Proof of Theorem eldioph4i
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 4143 . . . . . . . 8 (𝑡 = 𝑎 → (𝑡𝑤) = (𝑎𝑤))
21fveqeq2d 6895 . . . . . . 7 (𝑡 = 𝑎 → ((𝑃‘(𝑡𝑤)) = 0 ↔ (𝑃‘(𝑎𝑤)) = 0))
32rexbidv 3166 . . . . . 6 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑤)) = 0))
4 uneq2 4144 . . . . . . . 8 (𝑤 = 𝑏 → (𝑎𝑤) = (𝑎𝑏))
54fveqeq2d 6895 . . . . . . 7 (𝑤 = 𝑏 → ((𝑃‘(𝑎𝑤)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
65cbvrexvw 3225 . . . . . 6 (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0)
73, 6bitrdi 287 . . . . 5 (𝑡 = 𝑎 → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0))
87cbvrabv 3431 . . . 4 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0}
9 fveq1 6886 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑎𝑏)) = (𝑃‘(𝑎𝑏)))
109eqeq1d 2736 . . . . . . 7 (𝑝 = 𝑃 → ((𝑝‘(𝑎𝑏)) = 0 ↔ (𝑃‘(𝑎𝑏)) = 0))
1110rexbidv 3166 . . . . . 6 (𝑝 = 𝑃 → (∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0 ↔ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0))
1211rabbidv 3428 . . . . 5 (𝑝 = 𝑃 → {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0})
1312rspceeqv 3629 . . . 4 ((𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) ∧ {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑃‘(𝑎𝑏)) = 0}) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0})
148, 13mpan2 691 . . 3 (𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))) → ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0})
1514anim2i 617 . 2 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
16 eldioph4b.a . . 3 𝑊 ∈ V
17 eldioph4b.b . . 3 ¬ 𝑊 ∈ Fin
18 eldioph4b.c . . 3 (𝑊 ∩ ℕ) = ∅
1916, 17, 18eldioph4b 42767 . 2 ({𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁))){𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} = {𝑎 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑏 ∈ (ℕ0m 𝑊)(𝑝‘(𝑎𝑏)) = 0}))
2015, 19sylibr 234 1 ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  {crab 3420  Vcvv 3464  cun 3931  cin 3932  c0 4315  cfv 6542  (class class class)co 7414  m cmap 8849  Fincfn 8968  0cc0 11138  1c1 11139  cn 12249  0cn0 12510  ...cfz 13530  mzPolycmzp 42678  Diophcdioph 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-oadd 8493  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511  df-z 12598  df-uz 12862  df-fz 13531  df-hash 14353  df-mzpcl 42679  df-mzp 42680  df-dioph 42712
This theorem is referenced by:  diophren  42769
  Copyright terms: Public domain W3C validator