| Step | Hyp | Ref
| Expression |
| 1 | | fvssunirn 6914 |
. . . . 5
⊢ (𝐹‘𝑧) ⊆ ∪ ran
𝐹 |
| 2 | | simplrr 777 |
. . . . 5
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → (𝐹‘𝑦) = ∪ ran 𝐹) |
| 3 | 1, 2 | sseqtrrid 4007 |
. . . 4
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → (𝐹‘𝑧) ⊆ (𝐹‘𝑦)) |
| 4 | | simpll3 1215 |
. . . . 5
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) |
| 5 | | simplrl 776 |
. . . . 5
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → 𝑦 ∈ ℕ0) |
| 6 | | simpr 484 |
. . . . 5
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → 𝑧 ∈ (ℤ≥‘𝑦)) |
| 7 | | incssnn0 42701 |
. . . . 5
⊢
((∀𝑥 ∈
ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈
(ℤ≥‘𝑦)) → (𝐹‘𝑦) ⊆ (𝐹‘𝑧)) |
| 8 | 4, 5, 6, 7 | syl3anc 1373 |
. . . 4
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → (𝐹‘𝑦) ⊆ (𝐹‘𝑧)) |
| 9 | 3, 8 | eqssd 3981 |
. . 3
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) ∧ 𝑧 ∈ (ℤ≥‘𝑦)) → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 10 | 9 | ralrimiva 3133 |
. 2
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹‘𝑦) = ∪ ran 𝐹)) → ∀𝑧 ∈
(ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) |
| 11 | | frn 6718 |
. . . . . . . 8
⊢ (𝐹:ℕ0⟶𝐶 → ran 𝐹 ⊆ 𝐶) |
| 12 | 11 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ⊆ 𝐶) |
| 13 | | elpw2g 5308 |
. . . . . . . 8
⊢ (𝐶 ∈ (NoeACS‘𝑋) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹 ⊆ 𝐶)) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹 ⊆ 𝐶)) |
| 15 | 12, 14 | mpbird 257 |
. . . . . 6
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ 𝒫 𝐶) |
| 16 | | elex 3485 |
. . . . . 6
⊢ (ran
𝐹 ∈ 𝒫 𝐶 → ran 𝐹 ∈ V) |
| 17 | 15, 16 | syl 17 |
. . . . 5
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ V) |
| 18 | | ffn 6711 |
. . . . . . . 8
⊢ (𝐹:ℕ0⟶𝐶 → 𝐹 Fn ℕ0) |
| 19 | 18 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → 𝐹 Fn ℕ0) |
| 20 | | 0nn0 12521 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 21 | | fnfvelrn 7075 |
. . . . . . 7
⊢ ((𝐹 Fn ℕ0 ∧ 0
∈ ℕ0) → (𝐹‘0) ∈ ran 𝐹) |
| 22 | 19, 20, 21 | sylancl 586 |
. . . . . 6
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹‘0) ∈ ran 𝐹) |
| 23 | 22 | ne0d 4322 |
. . . . 5
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ≠ ∅) |
| 24 | | nn0re 12515 |
. . . . . . . . 9
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
ℝ) |
| 25 | 24 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
→ 𝑎 ∈
ℝ) |
| 26 | | nn0re 12515 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ∈
ℝ) |
| 27 | 26 | ad2antll 729 |
. . . . . . . 8
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
→ 𝑏 ∈
ℝ) |
| 28 | | simplrr 777 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ ℕ0) |
| 29 | | simpll3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) |
| 30 | | simplrl 776 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → 𝑎 ∈ ℕ0) |
| 31 | | nn0z 12618 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℕ0
→ 𝑎 ∈
ℤ) |
| 32 | | nn0z 12618 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ∈
ℤ) |
| 33 | | eluz 12871 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑏 ∈
(ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑏)) |
| 34 | 31, 32, 33 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) → (𝑏 ∈ (ℤ≥‘𝑎) ↔ 𝑎 ≤ 𝑏)) |
| 35 | 34 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) ∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ (ℤ≥‘𝑎)) |
| 36 | 35 | adantll 714 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ (ℤ≥‘𝑎)) |
| 37 | | incssnn0 42701 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈
(ℤ≥‘𝑎)) → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) |
| 38 | 29, 30, 36, 37 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) |
| 39 | | ssequn1 4166 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑎) ⊆ (𝐹‘𝑏) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑏)) |
| 40 | 38, 39 | sylib 218 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑏)) |
| 41 | | eqimss 4022 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑏) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑏)) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑏)) |
| 43 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → (𝐹‘𝑐) = (𝐹‘𝑏)) |
| 44 | 43 | sseq2d 3996 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑏))) |
| 45 | 44 | rspcev 3606 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℕ0
∧ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑏)) → ∃𝑐 ∈ ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 46 | 28, 42, 45 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑎 ≤ 𝑏) → ∃𝑐 ∈ ℕ0
((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 47 | | simplrl 776 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ ℕ0) |
| 48 | | simpll3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) |
| 49 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → 𝑏 ∈ ℕ0) |
| 50 | | eluz 12871 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 ∈
(ℤ≥‘𝑏) ↔ 𝑏 ≤ 𝑎)) |
| 51 | 32, 31, 50 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) → (𝑎 ∈ (ℤ≥‘𝑏) ↔ 𝑏 ≤ 𝑎)) |
| 52 | 51 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) ∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ (ℤ≥‘𝑏)) |
| 53 | 52 | adantll 714 |
. . . . . . . . . . . 12
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ (ℤ≥‘𝑏)) |
| 54 | | incssnn0 42701 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑏 ∈ ℕ0 ∧ 𝑎 ∈
(ℤ≥‘𝑏)) → (𝐹‘𝑏) ⊆ (𝐹‘𝑎)) |
| 55 | 48, 49, 53, 54 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → (𝐹‘𝑏) ⊆ (𝐹‘𝑎)) |
| 56 | | ssequn2 4169 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑏) ⊆ (𝐹‘𝑎) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑎)) |
| 57 | 55, 56 | sylib 218 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑎)) |
| 58 | | eqimss 4022 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = (𝐹‘𝑎) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑎)) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑎)) |
| 60 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑎 → (𝐹‘𝑐) = (𝐹‘𝑎)) |
| 61 | 60 | sseq2d 3996 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐) ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑎))) |
| 62 | 61 | rspcev 3606 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℕ0
∧ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑎)) → ∃𝑐 ∈ ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 63 | 47, 59, 62 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
∧ 𝑏 ≤ 𝑎) → ∃𝑐 ∈ ℕ0
((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 64 | 25, 27, 46, 63 | lecasei 11346 |
. . . . . . 7
⊢ (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0))
→ ∃𝑐 ∈
ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 65 | 64 | ralrimivva 3188 |
. . . . . 6
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑎 ∈ ℕ0 ∀𝑏 ∈ ℕ0
∃𝑐 ∈
ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐)) |
| 66 | | uneq1 4141 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑎) → (𝑦 ∪ 𝑧) = ((𝐹‘𝑎) ∪ 𝑧)) |
| 67 | 66 | sseq1d 3995 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑎) → ((𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤)) |
| 68 | 67 | rexbidv 3165 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑎) → (∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤)) |
| 69 | 68 | ralbidv 3164 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑎) → (∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤)) |
| 70 | 69 | ralrn 7083 |
. . . . . . . 8
⊢ (𝐹 Fn ℕ0 →
(∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0 ∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤)) |
| 71 | | uneq2 4142 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐹‘𝑏) → ((𝐹‘𝑎) ∪ 𝑧) = ((𝐹‘𝑎) ∪ (𝐹‘𝑏))) |
| 72 | 71 | sseq1d 3995 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐹‘𝑏) → (((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤)) |
| 73 | 72 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑏) → (∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤)) |
| 74 | 73 | ralrn 7083 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℕ0 →
(∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0 ∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤)) |
| 75 | | sseq2 3990 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹‘𝑐) → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤 ↔ ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 76 | 75 | rexrn 7082 |
. . . . . . . . . . 11
⊢ (𝐹 Fn ℕ0 →
(∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤 ↔ ∃𝑐 ∈ ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 77 | 76 | ralbidv 3164 |
. . . . . . . . . 10
⊢ (𝐹 Fn ℕ0 →
(∀𝑏 ∈
ℕ0 ∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0 ∃𝑐 ∈ ℕ0
((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 78 | 74, 77 | bitrd 279 |
. . . . . . . . 9
⊢ (𝐹 Fn ℕ0 →
(∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0 ∃𝑐 ∈ ℕ0
((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 79 | 78 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝐹 Fn ℕ0 →
(∀𝑎 ∈
ℕ0 ∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹((𝐹‘𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0 ∀𝑏 ∈ ℕ0
∃𝑐 ∈
ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 80 | 70, 79 | bitrd 279 |
. . . . . . 7
⊢ (𝐹 Fn ℕ0 →
(∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0 ∀𝑏 ∈ ℕ0
∃𝑐 ∈
ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 81 | 19, 80 | syl 17 |
. . . . . 6
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0 ∀𝑏 ∈ ℕ0
∃𝑐 ∈
ℕ0 ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘𝑐))) |
| 82 | 65, 81 | mpbird 257 |
. . . . 5
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ ran 𝐹∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤) |
| 83 | | isipodrs 18552 |
. . . . 5
⊢
((toInc‘ran 𝐹)
∈ Dirset ↔ (ran 𝐹
∈ V ∧ ran 𝐹 ≠
∅ ∧ ∀𝑦
∈ ran 𝐹∀𝑧 ∈ ran 𝐹∃𝑤 ∈ ran 𝐹(𝑦 ∪ 𝑧) ⊆ 𝑤)) |
| 84 | 17, 23, 82, 83 | syl3anbrc 1344 |
. . . 4
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (toInc‘ran 𝐹) ∈
Dirset) |
| 85 | | isnacs3 42700 |
. . . . . . 7
⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → ∪ 𝑦
∈ 𝑦))) |
| 86 | 85 | simprbi 496 |
. . . . . 6
⊢ (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → ∪ 𝑦
∈ 𝑦)) |
| 87 | 86 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → ∪ 𝑦
∈ 𝑦)) |
| 88 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑦 = ran 𝐹 → (toInc‘𝑦) = (toInc‘ran 𝐹)) |
| 89 | 88 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑦 = ran 𝐹 → ((toInc‘𝑦) ∈ Dirset ↔ (toInc‘ran 𝐹) ∈
Dirset)) |
| 90 | | unieq 4899 |
. . . . . . . 8
⊢ (𝑦 = ran 𝐹 → ∪ 𝑦 = ∪
ran 𝐹) |
| 91 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = ran 𝐹 → 𝑦 = ran 𝐹) |
| 92 | 90, 91 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑦 = ran 𝐹 → (∪ 𝑦 ∈ 𝑦 ↔ ∪ ran
𝐹 ∈ ran 𝐹)) |
| 93 | 89, 92 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = ran 𝐹 → (((toInc‘𝑦) ∈ Dirset → ∪ 𝑦
∈ 𝑦) ↔
((toInc‘ran 𝐹) ∈
Dirset → ∪ ran 𝐹 ∈ ran 𝐹))) |
| 94 | 93 | rspcva 3604 |
. . . . 5
⊢ ((ran
𝐹 ∈ 𝒫 𝐶 ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → ∪ 𝑦
∈ 𝑦)) →
((toInc‘ran 𝐹) ∈
Dirset → ∪ ran 𝐹 ∈ ran 𝐹)) |
| 95 | 15, 87, 94 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ((toInc‘ran 𝐹) ∈ Dirset → ∪ ran 𝐹 ∈ ran 𝐹)) |
| 96 | 84, 95 | mpd 15 |
. . 3
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∪
ran 𝐹 ∈ ran 𝐹) |
| 97 | | fvelrnb 6944 |
. . . 4
⊢ (𝐹 Fn ℕ0 →
(∪ ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹‘𝑦) = ∪ ran 𝐹)) |
| 98 | 19, 97 | syl 17 |
. . 3
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∪
ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0
(𝐹‘𝑦) = ∪ ran 𝐹)) |
| 99 | 96, 98 | mpbid 232 |
. 2
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 (𝐹‘𝑦) = ∪ ran 𝐹) |
| 100 | 10, 99 | reximddv 3157 |
1
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0
(𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈
(ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) |