Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Visualization version   GIF version

Theorem nacsfix 40450
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Distinct variable groups:   𝑧,𝐶,𝑦   𝑦,𝐹,𝑧   𝑧,𝑋,𝑦   𝑥,𝑦,𝑧,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝑋(𝑥)

Proof of Theorem nacsfix
Dummy variables 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6785 . . . . 5 (𝐹𝑧) ⊆ ran 𝐹
2 simplrr 774 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) = ran 𝐹)
31, 2sseqtrrid 3970 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ⊆ (𝐹𝑦))
4 simpll3 1212 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
5 simplrl 773 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑦 ∈ ℕ0)
6 simpr 484 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ (ℤ𝑦))
7 incssnn0 40449 . . . . 5 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
84, 5, 6, 7syl3anc 1369 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
93, 8eqssd 3934 . . 3 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) = (𝐹𝑦))
109ralrimiva 3107 . 2 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) → ∀𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
11 frn 6591 . . . . . . . 8 (𝐹:ℕ0𝐶 → ran 𝐹𝐶)
12113ad2ant2 1132 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹𝐶)
13 elpw2g 5263 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
14133ad2ant1 1131 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
1512, 14mpbird 256 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ 𝒫 𝐶)
16 elex 3440 . . . . . 6 (ran 𝐹 ∈ 𝒫 𝐶 → ran 𝐹 ∈ V)
1715, 16syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ V)
18 ffn 6584 . . . . . . . 8 (𝐹:ℕ0𝐶𝐹 Fn ℕ0)
19183ad2ant2 1132 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → 𝐹 Fn ℕ0)
20 0nn0 12178 . . . . . . 7 0 ∈ ℕ0
21 fnfvelrn 6940 . . . . . . 7 ((𝐹 Fn ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ran 𝐹)
2219, 20, 21sylancl 585 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹‘0) ∈ ran 𝐹)
2322ne0d 4266 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ≠ ∅)
24 nn0re 12172 . . . . . . . . 9 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2524ad2antrl 724 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
26 nn0re 12172 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2726ad2antll 725 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
28 simplrr 774 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ ℕ0)
29 simpll3 1212 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
30 simplrl 773 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑎 ∈ ℕ0)
31 nn0z 12273 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
32 nn0z 12273 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
33 eluz 12525 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3431, 32, 33syl2an 595 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3534biimpar 477 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
3635adantll 710 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
37 incssnn0 40449 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑎 ∈ ℕ0𝑏 ∈ (ℤ𝑎)) → (𝐹𝑎) ⊆ (𝐹𝑏))
3829, 30, 36, 37syl3anc 1369 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹𝑏))
39 ssequn1 4110 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ (𝐹𝑏) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
4038, 39sylib 217 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
41 eqimss 3973 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
4240, 41syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
43 fveq2 6756 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝐹𝑐) = (𝐹𝑏))
4443sseq2d 3949 . . . . . . . . . 10 (𝑐 = 𝑏 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)))
4544rspcev 3552 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
4628, 42, 45syl2anc 583 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
47 simplrl 773 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ ℕ0)
48 simpll3 1212 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
49 simplrr 774 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑏 ∈ ℕ0)
50 eluz 12525 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5132, 31, 50syl2anr 596 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5251biimpar 477 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
5352adantll 710 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
54 incssnn0 40449 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑏 ∈ ℕ0𝑎 ∈ (ℤ𝑏)) → (𝐹𝑏) ⊆ (𝐹𝑎))
5548, 49, 53, 54syl3anc 1369 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → (𝐹𝑏) ⊆ (𝐹𝑎))
56 ssequn2 4113 . . . . . . . . . . 11 ((𝐹𝑏) ⊆ (𝐹𝑎) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
5755, 56sylib 217 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
58 eqimss 3973 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
5957, 58syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
60 fveq2 6756 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
6160sseq2d 3949 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)))
6261rspcev 3552 . . . . . . . . 9 ((𝑎 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6347, 59, 62syl2anc 583 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6425, 27, 46, 63lecasei 11011 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6564ralrimivva 3114 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
66 uneq1 4086 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑎) → (𝑦𝑧) = ((𝐹𝑎) ∪ 𝑧))
6766sseq1d 3948 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ((𝑦𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6867rexbidv 3225 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (∃𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6968ralbidv 3120 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7069ralrn 6946 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
71 uneq2 4087 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑧) = ((𝐹𝑎) ∪ (𝐹𝑏)))
7271sseq1d 3948 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7372rexbidv 3225 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7473ralrn 6946 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
75 sseq2 3943 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7675rexrn 6945 . . . . . . . . . . 11 (𝐹 Fn ℕ0 → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776ralbidv 3120 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7874, 77bitrd 278 . . . . . . . . 9 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7978ralbidv 3120 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8070, 79bitrd 278 . . . . . . 7 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8119, 80syl 17 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8265, 81mpbird 256 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤)
83 isipodrs 18170 . . . . 5 ((toInc‘ran 𝐹) ∈ Dirset ↔ (ran 𝐹 ∈ V ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤))
8417, 23, 82, 83syl3anbrc 1341 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (toInc‘ran 𝐹) ∈ Dirset)
85 isnacs3 40448 . . . . . . 7 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)))
8685simprbi 496 . . . . . 6 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
87863ad2ant1 1131 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
88 fveq2 6756 . . . . . . . 8 (𝑦 = ran 𝐹 → (toInc‘𝑦) = (toInc‘ran 𝐹))
8988eleq1d 2823 . . . . . . 7 (𝑦 = ran 𝐹 → ((toInc‘𝑦) ∈ Dirset ↔ (toInc‘ran 𝐹) ∈ Dirset))
90 unieq 4847 . . . . . . . 8 (𝑦 = ran 𝐹 𝑦 = ran 𝐹)
91 id 22 . . . . . . . 8 (𝑦 = ran 𝐹𝑦 = ran 𝐹)
9290, 91eleq12d 2833 . . . . . . 7 (𝑦 = ran 𝐹 → ( 𝑦𝑦 ran 𝐹 ∈ ran 𝐹))
9389, 92imbi12d 344 . . . . . 6 (𝑦 = ran 𝐹 → (((toInc‘𝑦) ∈ Dirset → 𝑦𝑦) ↔ ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹)))
9493rspcva 3550 . . . . 5 ((ran 𝐹 ∈ 𝒫 𝐶 ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9515, 87, 94syl2anc 583 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9684, 95mpd 15 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ ran 𝐹)
97 fvelrnb 6812 . . . 4 (𝐹 Fn ℕ0 → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9819, 97syl 17 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9996, 98mpbid 231 . 2 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹)
10010, 99reximddv 3203 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  cle 10941  0cn0 12163  cz 12249  cuz 12511  Moorecmre 17208  Dirsetcdrs 17927  toInccipo 18160  NoeACScnacs 40440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ple 16908  df-ocomp 16909  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-drs 17929  df-poset 17946  df-ipo 18161  df-nacs 40441
This theorem is referenced by:  hbt  40871
  Copyright terms: Public domain W3C validator