Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Visualization version   GIF version

Theorem nacsfix 42668
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Distinct variable groups:   𝑧,𝐶,𝑦   𝑦,𝐹,𝑧   𝑧,𝑋,𝑦   𝑥,𝑦,𝑧,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝑋(𝑥)

Proof of Theorem nacsfix
Dummy variables 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6953 . . . . 5 (𝐹𝑧) ⊆ ran 𝐹
2 simplrr 777 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) = ran 𝐹)
31, 2sseqtrrid 4062 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) ⊆ (𝐹𝑦))
4 simpll3 1214 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
5 simplrl 776 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑦 ∈ ℕ0)
6 simpr 484 . . . . 5 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → 𝑧 ∈ (ℤ𝑦))
7 incssnn0 42667 . . . . 5 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
84, 5, 6, 7syl3anc 1371 . . . 4 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑦) ⊆ (𝐹𝑧))
93, 8eqssd 4026 . . 3 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) ∧ 𝑧 ∈ (ℤ𝑦)) → (𝐹𝑧) = (𝐹𝑦))
109ralrimiva 3152 . 2 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑦 ∈ ℕ0 ∧ (𝐹𝑦) = ran 𝐹)) → ∀𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
11 frn 6754 . . . . . . . 8 (𝐹:ℕ0𝐶 → ran 𝐹𝐶)
12113ad2ant2 1134 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹𝐶)
13 elpw2g 5351 . . . . . . . 8 (𝐶 ∈ (NoeACS‘𝑋) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
14133ad2ant1 1133 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (ran 𝐹 ∈ 𝒫 𝐶 ↔ ran 𝐹𝐶))
1512, 14mpbird 257 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ 𝒫 𝐶)
16 elex 3509 . . . . . 6 (ran 𝐹 ∈ 𝒫 𝐶 → ran 𝐹 ∈ V)
1715, 16syl 17 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ V)
18 ffn 6747 . . . . . . . 8 (𝐹:ℕ0𝐶𝐹 Fn ℕ0)
19183ad2ant2 1134 . . . . . . 7 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → 𝐹 Fn ℕ0)
20 0nn0 12568 . . . . . . 7 0 ∈ ℕ0
21 fnfvelrn 7114 . . . . . . 7 ((𝐹 Fn ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ran 𝐹)
2219, 20, 21sylancl 585 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹‘0) ∈ ran 𝐹)
2322ne0d 4365 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ≠ ∅)
24 nn0re 12562 . . . . . . . . 9 (𝑎 ∈ ℕ0𝑎 ∈ ℝ)
2524ad2antrl 727 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑎 ∈ ℝ)
26 nn0re 12562 . . . . . . . . 9 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
2726ad2antll 728 . . . . . . . 8 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → 𝑏 ∈ ℝ)
28 simplrr 777 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ ℕ0)
29 simpll3 1214 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
30 simplrl 776 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑎 ∈ ℕ0)
31 nn0z 12664 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
32 nn0z 12664 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
33 eluz 12917 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3431, 32, 33syl2an 595 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑏 ∈ (ℤ𝑎) ↔ 𝑎𝑏))
3534biimpar 477 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
3635adantll 713 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → 𝑏 ∈ (ℤ𝑎))
37 incssnn0 42667 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑎 ∈ ℕ0𝑏 ∈ (ℤ𝑎)) → (𝐹𝑎) ⊆ (𝐹𝑏))
3829, 30, 36, 37syl3anc 1371 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → (𝐹𝑎) ⊆ (𝐹𝑏))
39 ssequn1 4209 . . . . . . . . . . 11 ((𝐹𝑎) ⊆ (𝐹𝑏) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
4038, 39sylib 218 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏))
41 eqimss 4067 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
4240, 41syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏))
43 fveq2 6920 . . . . . . . . . . 11 (𝑐 = 𝑏 → (𝐹𝑐) = (𝐹𝑏))
4443sseq2d 4041 . . . . . . . . . 10 (𝑐 = 𝑏 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)))
4544rspcev 3635 . . . . . . . . 9 ((𝑏 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑏)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
4628, 42, 45syl2anc 583 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑎𝑏) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
47 simplrl 776 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ ℕ0)
48 simpll3 1214 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)))
49 simplrr 777 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑏 ∈ ℕ0)
50 eluz 12917 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5132, 31, 50syl2anr 596 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑎 ∈ (ℤ𝑏) ↔ 𝑏𝑎))
5251biimpar 477 . . . . . . . . . . . . 13 (((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
5352adantll 713 . . . . . . . . . . . 12 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → 𝑎 ∈ (ℤ𝑏))
54 incssnn0 42667 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝑏 ∈ ℕ0𝑎 ∈ (ℤ𝑏)) → (𝐹𝑏) ⊆ (𝐹𝑎))
5548, 49, 53, 54syl3anc 1371 . . . . . . . . . . 11 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → (𝐹𝑏) ⊆ (𝐹𝑎))
56 ssequn2 4212 . . . . . . . . . . 11 ((𝐹𝑏) ⊆ (𝐹𝑎) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
5755, 56sylib 218 . . . . . . . . . 10 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎))
58 eqimss 4067 . . . . . . . . . 10 (((𝐹𝑎) ∪ (𝐹𝑏)) = (𝐹𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
5957, 58syl 17 . . . . . . . . 9 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎))
60 fveq2 6920 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
6160sseq2d 4041 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐) ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)))
6261rspcev 3635 . . . . . . . . 9 ((𝑎 ∈ ℕ0 ∧ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑎)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6347, 59, 62syl2anc 583 . . . . . . . 8 ((((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) ∧ 𝑏𝑎) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6425, 27, 46, 63lecasei 11396 . . . . . . 7 (((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) ∧ (𝑎 ∈ ℕ0𝑏 ∈ ℕ0)) → ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
6564ralrimivva 3208 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐))
66 uneq1 4184 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑎) → (𝑦𝑧) = ((𝐹𝑎) ∪ 𝑧))
6766sseq1d 4040 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ((𝑦𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6867rexbidv 3185 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (∃𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
6968ralbidv 3184 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
7069ralrn 7122 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤))
71 uneq2 4185 . . . . . . . . . . . . 13 (𝑧 = (𝐹𝑏) → ((𝐹𝑎) ∪ 𝑧) = ((𝐹𝑎) ∪ (𝐹𝑏)))
7271sseq1d 4040 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → (((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7372rexbidv 3185 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
7473ralrn 7122 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤))
75 sseq2 4035 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑐) → (((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7675rexrn 7121 . . . . . . . . . . 11 (𝐹 Fn ℕ0 → (∃𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∃𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7776ralbidv 3184 . . . . . . . . . 10 (𝐹 Fn ℕ0 → (∀𝑏 ∈ ℕ0𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7874, 77bitrd 279 . . . . . . . . 9 (𝐹 Fn ℕ0 → (∀𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
7978ralbidv 3184 . . . . . . . 8 (𝐹 Fn ℕ0 → (∀𝑎 ∈ ℕ0𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹((𝐹𝑎) ∪ 𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8070, 79bitrd 279 . . . . . . 7 (𝐹 Fn ℕ0 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8119, 80syl 17 . . . . . 6 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤 ↔ ∀𝑎 ∈ ℕ0𝑏 ∈ ℕ0𝑐 ∈ ℕ0 ((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹𝑐)))
8265, 81mpbird 257 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤)
83 isipodrs 18607 . . . . 5 ((toInc‘ran 𝐹) ∈ Dirset ↔ (ran 𝐹 ∈ V ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑤 ∈ ran 𝐹(𝑦𝑧) ⊆ 𝑤))
8417, 23, 82, 83syl3anbrc 1343 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (toInc‘ran 𝐹) ∈ Dirset)
85 isnacs3 42666 . . . . . . 7 (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)))
8685simprbi 496 . . . . . 6 (𝐶 ∈ (NoeACS‘𝑋) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
87863ad2ant1 1133 . . . . 5 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦))
88 fveq2 6920 . . . . . . . 8 (𝑦 = ran 𝐹 → (toInc‘𝑦) = (toInc‘ran 𝐹))
8988eleq1d 2829 . . . . . . 7 (𝑦 = ran 𝐹 → ((toInc‘𝑦) ∈ Dirset ↔ (toInc‘ran 𝐹) ∈ Dirset))
90 unieq 4942 . . . . . . . 8 (𝑦 = ran 𝐹 𝑦 = ran 𝐹)
91 id 22 . . . . . . . 8 (𝑦 = ran 𝐹𝑦 = ran 𝐹)
9290, 91eleq12d 2838 . . . . . . 7 (𝑦 = ran 𝐹 → ( 𝑦𝑦 ran 𝐹 ∈ ran 𝐹))
9389, 92imbi12d 344 . . . . . 6 (𝑦 = ran 𝐹 → (((toInc‘𝑦) ∈ Dirset → 𝑦𝑦) ↔ ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹)))
9493rspcva 3633 . . . . 5 ((ran 𝐹 ∈ 𝒫 𝐶 ∧ ∀𝑦 ∈ 𝒫 𝐶((toInc‘𝑦) ∈ Dirset → 𝑦𝑦)) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9515, 87, 94syl2anc 583 . . . 4 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ((toInc‘ran 𝐹) ∈ Dirset → ran 𝐹 ∈ ran 𝐹))
9684, 95mpd 15 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ran 𝐹 ∈ ran 𝐹)
97 fvelrnb 6982 . . . 4 (𝐹 Fn ℕ0 → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9819, 97syl 17 . . 3 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ( ran 𝐹 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹))
9996, 98mpbid 232 . 2 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 (𝐹𝑦) = ran 𝐹)
10010, 99reximddv 3177 1 ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0𝑧 ∈ (ℤ𝑦)(𝐹𝑧) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  0cn0 12553  cz 12639  cuz 12903  Moorecmre 17640  Dirsetcdrs 18364  toInccipo 18597  NoeACScnacs 42658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598  df-nacs 42659
This theorem is referenced by:  hbt  43087
  Copyright terms: Public domain W3C validator