![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opfv | Structured version Visualization version GIF version |
Description: Value of a function producing ordered pairs. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
opfv | ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . . 4 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ran 𝐹 ⊆ (V × V)) | |
2 | fvelrn 7075 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
3 | 2 | adantlr 713 | . . . 4 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
4 | 1, 3 | sseldd 3982 | . . 3 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ (V × V)) |
5 | 1st2ndb 8011 | . . 3 ⊢ ((𝐹‘𝑥) ∈ (V × V) ↔ (𝐹‘𝑥) = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
7 | fvco 6986 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((1st ∘ 𝐹)‘𝑥) = (1st ‘(𝐹‘𝑥))) | |
8 | fvco 6986 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((2nd ∘ 𝐹)‘𝑥) = (2nd ‘(𝐹‘𝑥))) | |
9 | 7, 8 | opeq12d 4880 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
10 | 9 | adantlr 713 | . 2 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
11 | 6, 10 | eqtr4d 2775 | 1 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 ⟨cop 4633 × cxp 5673 dom cdm 5675 ran crn 5676 ∘ ccom 5679 Fun wfun 6534 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: xppreima 31858 xppreima2 31863 |
Copyright terms: Public domain | W3C validator |