![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opfv | Structured version Visualization version GIF version |
Description: Value of a function producing ordered pairs. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
opfv | ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . . . 4 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ran 𝐹 ⊆ (V × V)) | |
2 | fvelrn 7069 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
3 | 2 | adantlr 712 | . . . 4 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
4 | 1, 3 | sseldd 3976 | . . 3 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ (V × V)) |
5 | 1st2ndb 8009 | . . 3 ⊢ ((𝐹‘𝑥) ∈ (V × V) ↔ (𝐹‘𝑥) = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
7 | fvco 6980 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((1st ∘ 𝐹)‘𝑥) = (1st ‘(𝐹‘𝑥))) | |
8 | fvco 6980 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((2nd ∘ 𝐹)‘𝑥) = (2nd ‘(𝐹‘𝑥))) | |
9 | 7, 8 | opeq12d 4874 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
10 | 9 | adantlr 712 | . 2 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩ = ⟨(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))⟩) |
11 | 6, 10 | eqtr4d 2767 | 1 ⊢ (((Fun 𝐹 ∧ ran 𝐹 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = ⟨((1st ∘ 𝐹)‘𝑥), ((2nd ∘ 𝐹)‘𝑥)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3941 ⟨cop 4627 × cxp 5665 dom cdm 5667 ran crn 5668 ∘ ccom 5671 Fun wfun 6528 ‘cfv 6534 1st c1st 7967 2nd c2nd 7968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 df-1st 7969 df-2nd 7970 |
This theorem is referenced by: xppreima 32343 xppreima2 32348 |
Copyright terms: Public domain | W3C validator |