Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssre2 Structured version   Visualization version   GIF version

Theorem uzssre2 41983
Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzssre2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzssre2 𝑍 ⊆ ℝ

Proof of Theorem uzssre2
StepHypRef Expression
1 uzssre2.1 . 2 𝑍 = (ℤ𝑀)
2 uzssz 12252 . . 3 (ℤ𝑀) ⊆ ℤ
3 zssre 11976 . . 3 ℤ ⊆ ℝ
42, 3sstri 3951 . 2 (ℤ𝑀) ⊆ ℝ
51, 4eqsstri 3976 1 𝑍 ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wss 3908  cfv 6334  cr 10525  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342  df-ov 7143  df-neg 10862  df-z 11970  df-uz 12232
This theorem is referenced by:  limsupubuz2  42394
  Copyright terms: Public domain W3C validator