Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzssre2 Structured version   Visualization version   GIF version

Theorem uzssre2 45510
Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
uzssre2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzssre2 𝑍 ⊆ ℝ

Proof of Theorem uzssre2
StepHypRef Expression
1 uzssre2.1 . 2 𝑍 = (ℤ𝑀)
2 uzssz 12759 . . 3 (ℤ𝑀) ⊆ ℤ
3 zssre 12481 . . 3 ℤ ⊆ ℝ
42, 3sstri 3939 . 2 (ℤ𝑀) ⊆ ℝ
51, 4eqsstri 3976 1 𝑍 ⊆ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3897  cfv 6487  cr 11011  cz 12474  cuz 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-cnex 11068  ax-resscn 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-neg 11353  df-z 12475  df-uz 12739
This theorem is referenced by:  limsupubuz2  45916
  Copyright terms: Public domain W3C validator